Revista Científica Ingeniería y Desarrollo, Vol 30, No 2 (2012)

Tamaño de la letra:  Pequeña  Mediana  Grande

Deterioro de recubrimientos orgánicos: Principales modelos y métodos de cuantificación

Angela Bermudez Castañeda, Juan Guillermo Castaño-González, Félix Echeverría Echeverría

Resumen


 

Las pinturas constituyen uno de los principales métodos de protección contra el deterioro atmosférico de estructuras metálicas. El desempeño en servicio de las mismas depende en gran medida de la naturaleza de los recubrimientos orgánicos y del efecto de diversos factores ambientales y meteorológicos. Por esta razón, es esencial tanto para el desarrollo de nuevos recubrimientos como para los procesos de evaluación de pinturas identificar la fenomenología del deterioro, así como los métodos usados para modelar y predecir el comportamiento de los recubrimientos, las fechas de mantenimiento preventivo o reemplazo, además del tiempo de vida de la estructura reparada. Esta revisión recoge los principales métodos empleados para la modelación de dicho deterioro con fines predictivos.

 


Palabras Clave / Keywords

Deterioro, fenomenología, modelos, pinturas anticorrosivas./Anticorrosive paints, models, deterioration, phenomenology.

Tipo de Artículo

Artículo de revisión

Citas


[1] S. Brunner, P. Richner, U. Müller, and O. Guseva, “Test Equipment Accelerated weathering device for service life prediction for organic coatings,” Polymer Testing, vol. 24, no. 1, pp. 2531, Feb. 2005.

[2] V. D. Sherbondy, “Accelerated Weathering,” in Paint and Coating Testing Manual, J. V. Koleske, Ed., 14 ed. Philadelphia, United States: American Society for Testing and Materials, 1995, pp. 643-653.

[3] R. G. Buchheit, “Corrosion Resistant Coatings and Paints,” in Handbook of Environmental Degradation of Materials. vol. 1, M. Kutz, Ed., 2nd ed. New York: William Andrew Publishing, 2005, pp. 367-384.

[4] P. Roberge, Handbook of Corrosion Engineering, New York: McGraw-Hill, 2000.

[5] G. Wypyth, Handbook of Material Weathering, 4th ed. Toronto, Canada: ChemTec Publishing, 2008.

[6] J. Pospíšilç, J. Pilař, N. C. Billingham, A. Marek, Z. Horák, and S. Nešpůrek, “Factors affecting accelerated testing of polymer photostability,” Polymer Degradation and Stability, vol. 91, no. 3, pp. 417 -422, Mar. 2006.

[7] D. D. L. Fuente, S. Flores, and M. Morcillo, “Deterioration of paint systems applied on zinc substrates contaminated with soluble salts,” Progress in Organic Coatings, vol. 41, no. 1-3, pp. 183–190, Mar. 2001.

[8] D. Santos, M. R. Costa, and M. T. Santos, “Performance of polyester and modified polyester coil coatings exposed in different environments with high UV radiation,” Progress in Organic Coatings, vol. 58, no. 4, pp. 296–302, Mar. 2007.

[9] S. K. Roy, L. B. Thye, and D. Northwood, “The evaluation of paint performance for exterior applications in tropical environment Singapore’s,” Budding and Environment, vol. 31, no. 5, pp. 477-486, Sept. 1996.

[10] L. F. E. Jacques, “Accelerated and outdoor/natural exposure testing of coating,” Progress Polymer Science, vol. 25, no. 9, pp. 1337 – 1362., 2000.

[11] H. Ochs, J. Vogelsang, and G. Meyer, “Enhanced surface roughness of organic coatings due to UV-degradation: an unknown source of EIS-artifacts,” Progress in Organic Coatings, vol. 46, no. 3, pp. 182-190, May 2003.

[12] L. A. Escobar, W. Q. Meeker, D. L. Kugler, and L. L. Kramer, “Accelerated Destructive Degradation Tests: Data, Models, and Analysis,” in Mathematical and Statistical Methods in Reliability, New Jersey: World Sci. Publ, 2002, pp. 319-338.

[13] M. E. M. Almeida, “Minimisation of steel atmospheric corrosion: Updated structure of intervention,” Progress in Organic Coatings, vol. 54, no. 2, pp. 81-90, Oct. 2005.

[14] J. Simancas and M. Morcillo, “Factores condicionantes de la durabilidad de los sistemas de pinturas anticorrosivas sobre acero en exposiciones atmosféricas”, Revista de Metalurgia, vol. 34, n°. Extra, pp. 132-136, May 1998.

[15] D. J. Bartlett, “Why Protective Coatings Sometimes Go Wrong,” presented at the 13TH International Corrosion Congress, Melbourn, Australia, Nov. 1996, Paper 085.

[16] B. W. Johnson and R. McIntyre, “Analysis of test methods for UV durability predictions of polymer coatings,” Progress in Organic Coatings, vol. 27, no. 1-4, pp. 95-106, Jan. -Ap. 1996.

[17] L. Espada, M. E. Vázquez, and A. Sánchez, “Acid Rain: Its Influence on Corrosion Processes,” presented at the 13TH International Corrosion Congress, Melbourn, Australia, Nov. 1996, Paper 010.

[18] Standard Practice for Conducting Atmospheric Corrosion Test on Metals, ASTM G -50, 2003.

[19] R. Vera, B. M. Rosales, and C. Tapia, “Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere,” Corrosion Science, vol. 45, no. 2, pp. 321-337, Feb. 2003.

[20] D. A. Bayliss and D. H. Deacon, “Testing of coatings,” in Steelwork Corrosion Control, T. Francis, Ed., 2nd ed. New York: Spon Press, 2002, pp. 367-403.

[21] M. Morcillo, B. Chico, L. Mariaca, and E.Otero, “Salinity in marine atmospheric corrosion: its dependence on the wind regime existing in the site,” Corrosion Science, vol. 42, no. 1, pp. 91-104, Feb. 2000.

[22] Cidepint, “Protección de Superficies Metálicas Parte I,” in Protección de Superficies Metálicas, La Plata, Argentina: CIDEPINT, 2005.

[23] F. X. Perrin, M. Irigoyen, E. Aragon, and J. L. Vernet, “Artificial aging of acrylurethane and alkyd paints: a micro-ATR spectroscopic study,” Polymer Degradation and Stability, vol. 70, no. 3, pp. 469-475, 2000.

[24] X. Shi and S. G. Croll, “Recovery of surface defects on epoxy coatings and implications for the use of accelerated weathering,” Progress in Organic Coatings, vol. 2, no. 67, pp. 120-128, Feb. 2010.

[25] H. T. Chang and S. T. Chang, “Correlation between softwood discoloration induced by accelerated lightfastness testing and by indoor exposure,” Polymer Degradation and Stability, vol. 2, no. 72, pp. 361–365, May 2001.

[26] X. Yang and X. Ding, “Prediction of outdoor weathering performance of polypropylene filaments by accelerated weathering tests,” Geotextiles and Geomembranes, vol. 2, no. 24, pp. 103–109, 2006.

[27] K. M. White, R. M. Fischer, and W. D. Ketola, “An Analysis of the Effect of Irradiance on the Weathering of Polymeric Materials,” in Service life Prediction of Polymeric Materials. Global Perspectives, J. W. Martin, R. A. Ryntz, J. Chin, and R. A. Dickey, Ed., New York: Springer, 2009, pp. 71-82.

[28] K. P. Scott and H. K. H. III, “A New Approach to Characterizing Weathering Reciprocity in Xenon Arc Weathering Devices,” in Service life Prediction of Polymeric Materials. Global Perspectives, J. W. Martin, R. A. Ryntz, J. Chin, and R. A. Dickey, Ed., New York: Springer, 2009, pp. 83-91.

[29] J. Mallégol, M. Poelman, and M. G. Olivier, “Influence of UV weathering on corrosion resistance of prepainted steel,” Progress in Organic Coatings, vol. 61, no. 2-4, pp. 126–135, Feb. 2008.

[30] T. Muneer, S. Younes, and S. Munawwar, “Discourses on solar radiation modeling,” Renewable and Sustainable Energy Reviews, vol. 11, no. 4, pp. 551-602, May 2007.

[31] L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Statistical Science, vol. 21, no. 4, pp. 552-577, Nov. 2006.

[32] B. D. Amo, L. Véleva, A. R. D. Sarli, and C. I. Elsner, “Performance of coated steel systems exposed to different media Part I. Painted galvanized steel,” Progress in Organic Coatings, vol. 50, no. 3, pp. 179-192, Aug. 2004.

[33] W. Funke, “Corrosion-protective quality of organic coatings and interfacial conditions at the metal surface and the adjacent coating layer,” presented at the 15th International Corrosion Congress Frontiers in Corrosion Science and Technology, Granada, España, 2002.

[34] M. Morcillo, “Review Paper Soluble salts: their effect on premature degradation of anticorrosive paints,” Progress in Organic Coatings, vol. 36, no. 3, pp. 137-147, Jul. 1999.

[35] D. A. Bayliss and D. H. Deacon, “Coating defects and failures,” in Steelwork Corrosion Control, T. Francis, Ed., 2nd ed. New York: Spon Press, 2002.

[36] J. Morales, S. Martín-Krijer, F. Díaz, J. Hernández-Borges, and S. González, “Atmospheric corrosion in subtropical areas: influences of time of wetness and deficiency of the ISO 9223 norm,” Corrosion Science, vol. 47, no. 8, pp. 2005-2019, Aug. 2005.

[37] P. Bijl, A. Heikkilä, S. Syrjälä, A. Aarva, and A. Poikonen, “Property modelling of sample surface temperature in an outdoor weathering test,” Polymer Testing, vol. 5, no. 30, pp. 485–492, Aug. 2011.

[38] F. Fragata, Almeida, E., Herrera, F., Corvo, F., Simancas, J, Rivero, S., Rincon, O.T., “Conventional Painting Coating for Steel Protection in the Atmosphere,” presented at the 14th International Corrosion Congress Co-operation in Control, Cape Town, South Africa, 1999.

[39] D. Santos, C. Brites, M. R. Costa, and M. T. Santos, “Performance of paint systems with polyurethane topcoats, proposed for atmospheres with very high corrosivity category,” Progress in Organic Coatings, vol. 54, no. 4, pp. 344–352, Dec. 2005.

[40] F. Deflorian, S. Rossi, L. Fedrizzi, and C. Zanella, “Comparison of organic coating accelerated tests and natural weathering considering meteorological data,” Progress in Organic Coatings, vol. 59, no. 3, pp. 244-250, Jun. 2007.

[41] E. Almeida, D. Santos, F. Fragata, D. D. L. Fuente, and M. Morcillo, “Anticorrosive painting for a wide spectrum of marine atmospheres: Environmental-friendly versus traditional paint systems,” Progress in Organic Coatings, vol. 57, no. 1, pp. 11–22, Sept. 2006.

[42] W. Q. Meeker and L. A. Escobar, Statistical Methods for Reliability Data. Estados Unidos: Jhon Wiley & Sons, 1998.

[43] R. Nicolai, R. Dekker, and J. M. Noortwijk, “A comparison of models for measurable deterioration: An application to coatings on steel structures,” Realiability Engineering and System, vol. 92, no. 12, pp. 1635-1650, Dec. 2007.

[44] J. D. Fricker, T. Zayed, and L. M. Chang, Steel Bridge Protection Policy: Life Cycle Cost Analysis and Maintenance Plan. Indiana: Indiana Department of Transportation and Purdue University, 1999.

[45] R. P. Nicolai, J. B. G. Frenk, and R. Dekker, “Modelling and optimizing imperfect maintenance of coatings on steel structures,” Structural Safety, vol. 31, no. 3, pp. 234-244, May 2009.

[46] J. W. Martin, S. C. Saunders, F. L. Floyd, and W. J.P, Methodologies for Predicting the Services Lives of Coating Systems vol. 172. Philadelphia, USA: Diane Pub Co, 1994.

[47] R. P. Nicolai, G. Budai, R. Dekker, and M. Vreijling, “Modeling the deterioration of the coating on steel structures: a comparison of methods,” in IEEE International Conference on System, Man and Cybernetics, Hammamet, Tunisia, 2004, pp. 4177-4182.

[48] S. G. Croll, B. R. Hinderliter, and S. Liu, “Statistical approaches for predicting weathering degradation and service life,” Progress in Organic Coatings, vol. 55, no. 2, pp. 75–87, Feb. 2006.

[49] A. Lost, D. Najjar, and R. Hellouin, “Modelling of the Vickers hardness of paint coatings deposited on metallic substrates,” Surface and Coatings Technology, vol. 165, no. 2, pp. 126-132, Feb. 2003.

[50] D. R. Bauer, “Interpreting weathering acceleration factors for automotive coatings using exposure models,” Polymer Degradation and Stability, vol. 69, no. 3, pp. 307-316, Sept. 2000.

[51] I. Vaca-Trigo and W. Q. Meeker, “A Statistical Model for Linking Field and Laboratory Exposure Results for a Model Coating,” in Service Life Prediction of Polymeric Materials. Global Perspectives, J. W. Martin, R. A. Ryntz, J. Chin, and R. A. Dickey, Ed., New York: Springer, 2009, pp. 29-43.

[52] D. X. Gu, Stanley, W. E. Byrd, B. Dickens, I. Vaca-Trigo, W. Q. Meeker, T. Nguyen, J. W. Chin, and J. W. Martin, “Linking Accelerated Laboratory Test with Outdoor Performance Results for a Model Epoxy Coating System,” in Service Life Prediction of Polymeric Materials. Global Perspectives, J. W. Martin, R. A. Ryntz, J. Chin, and R. A. Dickey, Ed., New York: Springer, 2009, pp. 3-28.

[53] D. M. Frangopol, M. J. Kallen, and M. J. V. Noortwijk, “Probabilistic models for life-cycle performance of deteriorating structures: review and future directions,” Progress in Structural Engineering and Materials, vol. 6, no. 4, pp. 197-212, Oct. -Dec. 2004.

[54] J. M. V. Noortwijk and M. D. Frangopol, “Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures,” Probabilistic Engineering Mechanics, vol. 19, no. 4, pp. 345-359, Oct. 2004.

[55] E. Lee, B. Pourdeyhimi, C. Hazzard, and J. Summerville, “Analysis of coatings appearance and durability testing induced surface defects using image capture/processing/analysis,” Revista de Metalurgia Madrid, vol. 39, no. Extra, pp. 206-212, Dec. 2003.

[56] S. Lee, “Color Image-based Defect Detection Method and Steel Bridge Coating,” presented at the Texas 47th ASC Annual International Conference Proceedings, Texas, 2011.

[57] S. T. Kyvelidis, L. Lykouropoulos, and N. Kouloumbi, “Digital system for detecting, classifying, and fast retrieving corrosion generated defects,” Journal of Coatings Technology, vol. 73, no. 915, pp. 67-73, Ap. 2001.

[58] J. H. Ali, W. B. Wang, R. R. Alfano, and M. K. Kassir, “Detection of corrosion and cracking beneath paint using photonic techniques,” Theoretical and Applied Fracture Mechanics, vol. 41, no. 1-3, pp. 1-7, Ap. 2004.

[59] F. Fragata, R. P. Salai, C. Amorim, and E. Almeida, “Compatibility and incompatibility in anticorrosive painting: The particular case of maintenance painting,” Progress in Organic Coatings, vol. 56, no. 4, pp. 257-268, Aug. 2006.

[60] M. D. Pandey, X. X. Yuan, and J. M. V. Noortwijk, “Gamma process model for reliability analysis and replacement of aging structural components,” in ICOSSAR, Roma, Italia, 2005, pp. 2439–2444.

[61] J. M. V. Noortwijk, “A survey of the application of gamma processes in maintenance,” Reliability Engineering and System Safety, vol. 94, no. 1, pp. 2-21, Jan. 2009.

[62] J. D. Bakker, H. J. V. d. Graaf, and J. M. V. Noortwijk, “Model of Lifetime-Extending Maintenance,” in 8th International Conference on Structural Faults and Repair, London, United Kingdom, 1999, pp. 1-13.

[63] F. E. Goodwin, Weyers, R., “Life Cycle Cost Analysis for Zinc and Other Protective Coatings for Steel Structures,” presented at the 14th International Corrosion Congress, Cape Town, South Africa, 1999.


Texto completo: PDF HTML

Refbacks

  • No hay Refbacks actualmente.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.