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Abstract
This paper presents a retail electricity pri-
cing strategy for multi-microgrid distri-
bution systems based on a policy-driven 
reinforcement learning algorithm. Deve-
loped from the perspective of the distribu-
tion system operator (DSO), the approach 
enables the practical derivation of a set of 
hourly electricity prices that simultaneous-
ly maximize profit from energy exchanges 
and minimize the system’s peak-to-average 
load ratio, thereby flattening the aggrega-
te load profile. To address the absence of 
a complete system model from the DSO’s 
viewpoint, the training process employs 
a Monte Carlo-based method that genera-
tes synthetic data from representative base 
profiles, enabling extensive interaction 
between the DSO and its environment. Si-
mulations are conducted to validate the 
effectiveness of the proposed method. Ad-
ditionally, a sensitivity analysis is presen-
ted to evaluate the influence of key para-
meters on the training performance and 
the strategy’s effectiveness.

Keywords: distribution systems, micro-
grids, reinforcement learning, retail elec-
tricity pricing.

Resumen
Este artículo presenta una estrategia de 
asignación de precios minoristas de elec-
tricidad para sistemas de distribución con 
múltiples microrredes, basada en un algo-
ritmo de aprendizaje por refuerzo orien-
tado por políticas. Desarrollado desde la 
perspectiva del operador del sistema de 
distribución, este enfoque permite deter-
minar de forma práctica un conjunto de 
precios horarios de electricidad que, si-
multáneamente, maximiza el beneficio 
del intercambio de energía y minimiza la 
relación pico-promedio de la carga del sis-
tema, aplanando así el perfil de carga agre-
gado. Para abordar la ausencia de un mo-
delo completo del sistema desde el punto 
de vista del operador del sistema de distri-
bución, el proceso de entrenamiento em-
plea un método basado en Monte Carlo que 
genera datos sintéticos a partir de perfiles 
base representativos, lo que permite una 
amplia interacción entre el operador y su 
entorno. Se realizaron simulaciones para 
validar la efectividad del método propues-
to. Adicionalmente, se presenta un análi-
sis de sensibilidad que permite evaluar la 
influencia de parámetros claves en el des-
empeño del entrenamiento y la eficiencia 
de la estrategia.

Palabras clave: aprendizaje por re-
fuerzo, asignación de precios minoristas 
de electricidad, microrredes, sistemas 
de distribución. 
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INTRODUCTION

Microgrids are electrical networks comprising distributed energy resources (DERs), 
energy storage systems (ESSs), and clusters of local loads that function as a single 
controllable entity [1], [2]. With the increasing penetration of renewable energy, mi-
crogrids have gained popularity for enhancing the reliability and flexibility of distri-
bution systems through improved controllability [3], [4]. However, multi-microgrid 
distribution systems (MMDS), i.e., distribution systems with multiple microgrids 
connected at different nodes, introduce complex challenges for managing energy ex-
change [5]-[8]. Factors such as the intermittency of renewable sources, the stochastic 
nature of load demand, and the privacy constraints of microgrids make retail elec-
tricity pricing a difficult task for distribution system operators (DSOs) [9], [10].

Advanced metering infrastructure (AMI) in smart grids provides users with real-ti-
me electricity pricing and detailed insights into their power consumption, enabling 
strategic decisions to reduce energy costs [11], [12]. A well-designed retail electricity 
pricing strategy serves as a flexible tool to achieve specific operational goals within 
microgrids. For example, it can reduce load consumption during peak hours, flat-
tening the load curve and reducing stress on distribution systems. In multi-micro-
grid distribution systems (MMDS), it can also encourage self-consumption based on 
resource availability. Additionally, AMI data enables DSOs to analyze load patterns 
and user consumption behaviors, improving system awareness and mitigating failu-
res from unexpected events [13]. In this context, AMI-based retail electricity pricing 
plays a crucial role in ensuring the reliable and secure operation of MMDS [14], [15].

Due to data privacy and ownership concerns, DSOs typically lack access to detailed 
information about the topology, configuration, or models beyond the Point of Com-
mon Coupling (PCC) of each microgrid. This limitation restricts the use of conven-
tional model-based techniques that rely on precise system data and predictions. In 
contrast, data-driven techniques such as Reinforcement Learning (RL) have emerged 
as a promising alternative, enabling effective grid operation without requiring com-
prehensive modeling of all distribution system components [16].

In recent years, the application of Reinforcement Learning (RL) has gained traction 
in addressing various control and decision-making challenges in distribution sys-
tems with high renewable energy penetration. Notable contributions can be found 
in areas such as online microgrid scheduling [17], real-time energy management [18], 
[19], power management of networked microgrids [20], and the operation of EV char-
ging stations [21], among others.

Several studies have proposed RL-based dynamic pricing strategies that rely on a ser-
vice provider acting as an intermediary between the utility company and customers 
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[22]-[25]. In [22], a service provider is trained to manage the energy exchange of mul-
tiple microgrids, optimizing their collective power transactions with the main grid. 
Similarly, [23] introduces a reinforcement and imitation learning approach to train 
a multi-objective retail broker, aiming to maximize economic benefits while balan-
cing energy supply and demand under operational constraints. Additionally, in [24] 
presents an RL-based dynamic pricing model where a service provider adjusts retail 
electricity prices based on customers’ load demand levels. While these approaches 
leverage RL, they are not explicitly designed from the DSO’s perspective to formulate 
an MMDS pricing strategy that maximizes total profit while enhancing key distribu-
tion network operational objectives.

Some studies formulate a bi-level problem consisting of a high and a low level. For 
instance, in [26], [27], the DSO utilizes RL at the higher level to set retail electrici-
ty prices. In [26], training uncertainties are mitigated through interval predictions. 
Similarly, [27] employs an interactive mechanism based on a leader-multi-follower 
Stackelberg game, where the DSO acts as the leader. However, both approaches pri-
marily focus on cost considerations while overlooking key operational objectives, 
such as flattening consumption curves.

Many studies use simulation-based models to train the DSO in managing MMDS res-
ponses. For example, [28] proposes a retail electricity pricing strategy that employs 
a deep neural network-based model to predict microgrid responses, ensuring custo-
mer privacy during RL agent training. Similarly, [29] presents an interactive MMDS 
pricing method aimed at minimizing deviations between real-time and day-ahead 
load curves. In this approach, the DSO optimizes profits using estimations from a 
deep learning-based interaction model. However, these methods may face signifi-
cant uncertainties due to the unpredictable expansion of generation systems and the 
lack of customer-side information.

Finally, in [15] a pricing scheme is proposed to encourage consumer participation 
in demand response by offering a selection of pricing plan options. Users are ca-
tegorized using a classification algorithm, allowing for tailored pricing strate-
gies. While this work primarily focuses on load response, it stands out for its 
practical implementation.

As observed in the review presented above, modeling and predicting microgrids be-
havior within multi-microgrid distribution systems (MMDS) remains a challenging 
and active area of research. Various methods continue to be developed to enhan-
ce prediction accuracy, particularly under conditions of limited or uncertain data. 
Therefore, inspired by previous research and seeking to contribute to the state of 
the art, this paper proposes a retail electricity pricing strategy for MMDS based on a 
policy-driven reinforcement learning (RL) algorithm.
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The proposed strategy is designed from the perspective of the Distribution System 
Operator (DSO), who seeks to dynamically determine a sequence of 24-hourly elec-
tricity prices. The reward function is designed to maximize energy exchange profits 
while simultaneously minimizing the system’s peak-to-average load ratio (PAR), a 
critical metric for reducing operational stress and improving grid reliability.

A key advantage of the proposed approach lies in its practical application, as it can 
be integrated with any simulation framework capable of capturing microgrid dyna-
mics within MMDS. Additionally, the resulting pricing policy can serve as a basis for 
other dynamic operational controls and retraining methods in response to changing 
system conditions.

The rest of the paper is organized as follows: Section 2 presents the modeling of the 
MMDS. Section 3 describes in detail the formulation of the RL problem, including 
the reward and the pricing policy. Then, Section 4 describes the training considera-
tions. The simulations conducted to validate the proposed method and an analysis 
of the impact of some key parameters are presented and discussed in Section 5. Fi-
nally, the main conclusions are drawn in Section 6.

MODELING OF THE MULTI-MICROGRID DISTRIBUTION SYSTEM

This section presents the modeling of the MMDS considered in this study. Fig. 1 illus-
trates a schematic of a radial distribution system comprising four interconnected 
microgrids. The thick dots represent nodes, connected by lines that denote line im-
pedances. It is assumed that a communication channel exists, enabling microgrids 
to receive real-time retail price updates from the DSO.

Source: own elaboration.

Fi g u r e 1. Scheme of a radial multi-microgrid distribution system 
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Microgrid Modeling

For a given microgrid, the dispatch problem can be stated as:

min {CD + Cθ}	 (1)
PD, Pθ

s.t.

PD + Pθ + pR = pL	 (2)

   
min.                      max.

	

PD       ≤ PD ≤ PD	 (3)

where CD is the cost of operation of the dispatchable sources (diesel generation) and  
Cθ is the cost of the exchanged power. Regarding the constraints in (2) and (3), PD is 
the hourly energy production of the dispatchable sources of the microgrid (diesel 
generation), Pθ is the hourly energy imported from the grid, pR is the hourly renewa-
ble energy production and pL is the hourly load consumption. Note that constraint 
(2) corresponds to the power balance of the microgrid. Also, constraint (3) models 
the operative limits of the dispatchable diesel generator, where 

  
min.PD  and 

  
max.PD  are the 

minimum and maximum values, respectively.

The following assumptions are made in the proposed formulation:

	� Negligible internal power losses: Power losses within each microgrid are 
assumed to be negligible. Although it would be possible to account for these losses 
by solving detailed internal power flow equations, a simplified mathematical 
model is employed during training to estimate Pθ. This simplification is justified 
by the fact that microgrids typically exhibit lower internal losses compared to 
conventional power grids.

	� Neglect of reactive power: While reactive power management plays an important 
role in the safe and efficient operation of distribution systems, its exclusion 
allows the analysis to remain focused on the global impact of the pricing 
mechanism on active power. This simplification enables a clearer interpretation 
of the results without undermining the generality of the conclusions.

	� Exclusion of energy storage systems: For the training of the proposed strategy, 
microgrids are modeled as prosumers connected at specific nodes, from which 
hourly exchanged power data are derived. From the grid operator’s perspective, 
increasing the internal complexity of microgrids, such as by including storage, 
does not significantly alter the operational logic of the strategy. 
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In this dispatch problem, the energy management system (EMS) of each microgrid 
seeks to minimize the total cost, defined as the sum of CD and Cθ. These terms are 
calculated as follows: CD is modeled as a quadratic function of the dispatched power 
P_D, as:

                
2CD = a · PD + b · P D + c	 (4)

where a, b and c are constant coefficients which can be estimated experimentally 
[30]-[32]. Whereas Cθ is calculated using the hourly retail price π and the traded 
power Pθ as follows:

Cθ = π · Pθ	 (5)

The renewable power generation pR is the addition of the power of the PV system ppv 
and the power of the wind system pw:

pR = ppv + pw	 (6)

For the PV system, the following simplified model is used:

ppv = npv · Apv · η · I	 (7)

where n_pv is the number of PV panels of the microgrid, Apv is the superficial area 
of each PV panel, η is the conversion efficiency and I is the solar irradiation [33], [34]; 
while for the wind power, the following simplified model is used

                       1pw = nw · ___ · ρ · Aw · Cpw · v3	 (8)
                     2

where nw is the number of wind generators of the microgrid, ρ is the density of air,  
Aw is the swept area of the wind turbine blades, Cpw is a power conversion coefficient, 
and v is the wind speed, which is used in a cubic form [35].

Notice that the retail price π is determined by the DSO. Thus, once this value is as-
signed, the traded power Pθ for each microgrid m corresponds to Pθm from the DSO’s 
perspective. 

The complete MMDS consists of multiple microgrids, each with distinct generation 
and load configurations. Table 1 summarizes the key characteristics of these confi-
gurations for the numerical example of four interconnected microgrids used in the 
following sections. The nominal power of each microgrid load will be used to gene-
rate a per-unit load profile for the training stage, as detailed in Section 4.
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Ta b l e 1. Microgrid configurations

MG PV panels1

(npv)
Wind generators2

(nw)
Diesel Gen.3

(nd)
Nominal power of

MG load [kW]

1 15 11 1 25

2 28 19 1 45

3 39 26 1 65

4 24 17 1 40

Note
1 Nominal power of each PV panel: 0.306 [kW].
2 Nominal power of each wind generator: 0.303 [kW].
3 Nominal power of each diesel generator: 30 [kW].
Source: own elaboration.

Distribution System Modeling

The distribution system is modeled as a balanced radial three-phase grid. Once the 
exchanged power for each microgrid is determined, the distribution system’s power 
flow is solved to obtain the total power exchanged at the substation, Pgrid (see Fig. 1). 
This value is then used to compute the reward, as described in the next section.

REINFORCEMENT LEARNING FORMULATION

To formulate retail electricity pricing as a reinforcement learning problem, it is es-
sential to define its key elements. Figure 2 illustrates this framework:

	� The agent is the DSO, whose action is to set the hourly retail electricity price π 
for the microgrids connected to the distribution system (the environment), as 
shown in Fig. 2(a).

	� Given this price, each microgrid’s EMS determines its traded power by solving 
the optimization problem described in subsection 2.1, as depicted in Fig. 2(b).
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Source: own elaboration.

Fi g u r e 2. Reinforcement learning formulation: (a) 
action of the agent, (b) environment

Due to privacy constraints, the DSO lacks knowledge of the internal topology and 
operational details of each microgrid (represented in light gray in the figure). Howe-
ver, for evaluation purposes in this study, each microgrid is modeled to obtain its 
respective output Pθm. The total traded power Pgrid is then computed by solving the 
distribution system’s power flow equations using the power injections Pθm from all 
microgrids.

Reward

The reward function is formulated to maximize profit from power exchanges with 
microgrids while simultaneously smoothing the load profile by minimizing the 
peak-to-average ratio (PAR) over a daily cycle:

R = α · B – (1–α) · PAR	 (9)

where B is the normalized profit of the DSO, PAR is the normalized peak-to-average 
ratio, and α is a weight introduced to maintain a balance between both objectives. 
Note that α can be adjusted according to system requirements.

In (9), the profit B is defined as follows:

𝐵𝐵τ = ∑ λ𝑡𝑡−τ
τ+23

𝑡𝑡=τ
⋅ π𝑡𝑡 ⋅

𝑃𝑃grid,𝑡𝑡
𝐵𝐵base

 	 (10)
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where λ corresponds to a discount factor in range of [0, 1], and B_base is a regulari-
zation term. A window of 24 hours is used to compute the benefits for t=τ. The effect 
of λ is discussed in the next section. 

On the other hand, the PAR, which is the relationship between the maximum and 
the average value of the hourly total power exchanged in a daily cycle, is defined as:

              max Pgrid
PAR = _________	 (11)
              mean Pgrid

The PAR must be over an entire daily cycle rather than on an hourly basis. Conse-
quently, the training process will consist of 24-hour episodes. Additionally, PAR is 
not explicitly expressed in terms of the retail price π, which serves as the DSO’s de-
cision variable. This key aspect complicates solving the problem using traditional 
linear techniques.

Pricing Policy

The proposed formulation aims to obtain a daily pricing policy Π consisting of 
24-hourly prices. This policy maximizes the total profit from power sales while mi-
nimizing the PAR, aligning with the defined objective function. These values are 
calculated for a daily cycle rather than individually for each hour. For this reason, 
the training algorithm must account for long-term effects, where the discount fac-
tor λ plays a crucial role. Additionally, the pricing policy Π can be updated through 
a retraining algorithm or used as an initial policy for a dynamic operational control 
strategy.

TRAINING METHOD

The lack of a complete model from the DSO perspective poses challenges in formu-
lating an explicit transition probability function. To overcome this, a Monte Car-
lo-based training approach is employed, enabling extensive interaction between 
the DSO and its environment. In order to capture the stochastic nature of energy 
resources and loads, representative base profiles or seed profiles are defined, from 
which synthetic data are generated by introducing random variations using a normal 
Gaussian distribution. 

For example, in the case of load profiles, Fig. 3 presents the per-unit seed day (solid 
line), derived from a typical residential consumption curve in Colombia.  To simu-
late realistic day-to-day variability, more than 50 synthetic daily profiles are gene-
rated by multiplying each point on the seed profile by a random factor drawn from 
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a normal distribution with a mean (μ) of 1 and a standard deviation (σ) of 0.05. In 
this context, μ= 1 ensures that the average of the generated profiles remains centered 
around the original seed curve, while σ= 0.05 introduces a 5% variability around that 
average, capturing the natural fluctuations observed in real-world consumption.

These per-unit synthetic profiles are then scaled by the nominal power of each mi-
crogrid’s load (see Table 1) for use in the training process. The same methodology is 
applied to generate synthetic data for solar irradiation and wind speed: in those ca-
ses, the random factors are drawn from normal distributions with μ=1 and σ=0.035; 
and μ=1 and σ=0.005, respectively.

Source: own elaboration.

Fi g u r e 3. Daily seed of the per-unit load profile and synthetic 
days obtained using a normal distribution function

The training method is described in Algorithm 1. Initially, a search space of prices 
πs, is defined. These prices can be generated randomly or proportionally based on 
historical market data relevant to the specific application. In this study, a set of five 
prices was selected:

πs={0.027,0.0285,0.030,0.0315,0.033}.
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Algorithm 1: Monte Carlo training method

1: Set the search space of prices πs

2: Define the number of episodes Ne

3: for τ = 1 to 24 (rolling initial hour) do
4:	 for Ne episodes do
5:	 for t = τ to τ+23 (daily cycle) do
6:	 Select a random price
7:	 Run the MG modeling to obtain Pθm

8:	 Solve the DS power flows to obtain Pθm

9:	 end for
10:	 Calculate the reward R for the episode
11:	 end for
12:	 Select the price for the hour τ and store in Π
13: end for

For this formulation, an episode corresponds to a run of a daily cycle from an initial 
hour τ to a terminal hour τ+23. The sequence in each episode is the following:

	� A random price of πs is selected.

	� The DSO sets this hourly retail price and the powers Pθm are obtained.

	� The total traded power Pgrid is obtained solving the distribution system 
power flows.

This process is repeated Ne times, calculating the reward R for each episode. The 
average reward of all the episodes that started in each price of πs is obtained, and the 
one with the highest value is selected as the price for the hour τ in Π. For example, 
if for hour 1, the episodes that started with a price of 0.030 yield the highest average 
reward compared to the other prices, then 0.030 is assigned to the first position in 
the final policy Π. This procedure is repeated iteratively, rolling the initial hour to 
obtain the 24 prices of Π.

Although the hourly price selection for policy Π is made only for the initial hour 
of the set of episodes, the long-term effects of a price choice on daily performance 
can be farsighted due to the use of the discount factor λ. Fig. 4 seeks to illustrate the 
training method, with the gradual fading of the line’s color representing the dimini-
shing influence of future prices over time. For this work, λ is set to 0.9, a commonly 
used value for this type of problem.
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Source: own elaboration.

Fi g u r e 4. Illustrative diagram of the training method

RESULTS AND DISCUSSION

This section presents the results and analyzes the impact of key variables on the tra-
ining process and the resulting pricing policy. For this, two synthetically generated 
50-days datasets were generated: a training dataset Xtrain and a testing dataset Xtest. 
These were obtained following the indications presented in the previous section.

Impact of the Selection of the Numbers of Episodes Ne over the Reward

Initially, the impact of varying the number of episodes Ne over the pricing policy se-
lection is analyzed. The training process was repeated 50 times for each value of Ne 
using Xtrain, and the averages results are presented in Fig. 5.
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Source: own elaboration.

Fi g u r e 5. Impact of the number of episodes simulated 
over the reward of price policy obtained

The results show that policies trained with a low Ne present lower rewards, as an 
insufficient number of episodes limits effective exploration in a large search space. 
Conversely, increasing Ne leads to higher rewards, with the results stabilizing within 
a certain range. However, excessively increasing Ne results in computationally ex-
pensive and time-consuming simulations without significant reward improvement. 
Based on these findings, an Ne of 5000 is used for the remaining simulations.

Impact of the Selection of the Weighting Factor  over the Reward

Next, the relevance of the weighting factor was evaluated. To do so, the value of α 
was varied from 0 to 1 by steps of 0.2 (including 0.5), training for Xtrain. The results 
are presented in Fig. 6.

In this formulation, the objective is to maximize profit while minimizing PAR (which 
is always a positive number). When α = 1, the reward is entirely based on profit, 
maximizing the term α · B. Conversely, when α = 0, the reward depends solely on PAR, 
which has a negative sign in (9), leading to the smallest possible PAR value.

Fig. 6(a) illustrates these effects, where the x-axis represents α values. The left y-axis 
(blue) corresponds to the reward term α · B, while the right y-axis (orange) represents 
the reward term (1 - α)PAR.
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To better visualize the influence of α, Fig. 6(b) presents non-weighted rewards. The 
results indicate that α = 0.8 achieves a well-balanced trade-off between the desired 
objectives, maximizing the non-weighted reward. Therefore, this value is used for 
the remaining simulations.

Source: own elaboration.

Fi g u r e 6. Impact of the weight factor α over: (a) the reward 
terms αB and (1-α)PAR, (b) the non-weighted reward

Pricing Policy Selection

Finally, a pricing policy Π was obtained using α = 0.8 and Ne = 5000 in a training 
using Xtrain. Fig. 7 displays the hourly prices of Π as a green line. Additionally, three 
constant price policies are depicted in gray lines, Π0.0315, Π0.0300 and Π0.0285, each repre-
senting a constant price applied throughout the day.

The obtained pricing policy Π fluctuates between different values in the set πs, wi-
thout following an obvious pattern that could have been easily identified without 
the formulation and training of the proposed strategy.
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Source: own elaboration.

Fi g u r e 7. Pricing policies: in green Π obtained using α = 0.8 and 
Ne=5000 trained with Xtrain; In gray, three constant price policies

The four pricing policies were evaluated using Xtest, and the results are presented in 
Table 2. As can be seen, the pricing policy Π achieved the highest reward, outperfor-
ming some of the constant price policies by up to 8%. While these results may vary 
slightly with different test datasets, the overall trend confirms that Π consistently 
outperforms the constant pricing policies in the vast majority of cases, demonstra-
ting the effectiveness of the proposed strategy.

Ta b l e 2. Rewards for different pricing policies

Price policy Type Reward R

Π Variable 2.665

Π0.0315 Constant 2.657

Π0.0300 Constant 2.556

Π0.0285 Constant 2.457

Source: own elaboration.

CONCLUSIONS

This work presented a retail electricity pricing strategy for MMDS based on a poli-
cy-driven RL algorithm. Developed from the perspective of the distribution system 
operator, the proposed strategy determines a sequence of hourly electricity prices. 
The policy is derived through a reward function that seeks to maximize energy ex-
change profits while minimizing system stress, quantified via the PAR. The obtained 
policy can be easily applied as a starting policy for dynamic operational control and 
retraining methods, in response to changing system conditions.
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The effectiveness of the proposed strategy has been validated through a numerical 
case study. The results demonstrate that the RL agent generates a set of hourly prices 
for a given operating day that outperforms constant price strategy in terms of accu-
mulated reward. Moreover, the obtained price set does not exhibit a clear trend that 
could have been identified without the formulation and training process.

It is important to note that certain simplifying assumptions were made in this case 
study. These include neglecting internal power losses within microgrids, disregar-
ding the effects of reactive power flows, and omitting the presence of energy storage 
systems. However, these elements could be incorporated into a more detailed case 
study without affecting the findings obtained in this work.

As future work, the derived pricing policy will be further explored as a baseline for 
other dynamic operational control and policy retraining algorithms. This will su-
pport the broader objective of investigating how retail electricity pricing can be sys-
tematically linked to other operational aspects of distribution networks.
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