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Abstract 
This work presents a threshold-based de-
modulation strategy for 16-QAM and 4+12 
PSK constellations impaired by non-Gaus-
sian distortions. The proposed method 
uses clustering validity indices as a deci-
sion metric. By applying fragmentation 
through clustering algorithms ‒k-means, 
fuzzy c-means (FCM), and Gustafson-Kes-
sel FCM (GK-FCM)‒ we were able to iden-
tify ellipsoidal distortions on external da-
ta-symbol clusters and dynamically select 
appropriate demodulation strategies. The 
proposed clustering-based approach does 
not require IQ (in-phase and quadrature) 
branch imbalance and phase-offset correc-
tions by redefining decision regions based 
on cluster centroids. We introduce the use 
of clustering validity indexes (Partition 
Coefficient, Separation, Xie and Beni’s, 
and Dunn Index) to characterize symbol 
distortion levels in constellation diagrams 
and establish performance thresholds. 
The combination of DI and XB provides 
a criterion for defining the threshold of 
non-Gaussian distortion. In particular, 
XB ≥ 10.7 and DI ≥ 0.015 may serve as em-
pirical indicators that the constellation in 
radio over fiber (RoF) optical systems has 
transitioned into a more structured regi-
me where the cluster centroids are used 
for demodulation. Experimental results 
show that at high-noise levels (the optical 
signal to noise ratio OSNR = 16 dB), the XB 
index reaches its minimum value, confir-
ming the method’s sensitivity to noise-in-
duced distortion. Improvements in the 
optical signal-to-noise ratio (OSNR) of up 
to 2.1 dB for 16-QAM and 0.7 dB for 4+12 
PSK were observed at a BER threshold of 
10-² after transmission over 78.8 km of fi-
ber. The combination of DI and XB indices 
provides a robust criterion for defining 
the threshold of non-Gaussian distortion. 
These experimental findings suggest that 

clustering validity metrics can serve as 
effective thresholds for adaptive demodu-
lation, enabling real-time identification of 
non-Gaussian distortions in RoF commu-
nication systems.

Keywords: clustering, k-means, fuzzy 
c-means, Gustafson-Kessel, non-Gaussian 
distortion, nonlinear phase noise.



Resumen
En este trabajo, los autores demuestran 
experimentalmente una estrategia de de-
modulación basada en umbrales para 
constelaciones 16-QAM y 4+12 PSK afecta-
das por distorsiones no gaussianas, utili-
zando índices de validez de agrupamiento 
como métrica de decisión. Al aplicar frag-
mentación mediante algoritmos de clus-
tering ‒k-means, fuzzy c-means (FCM) y 
Gustafson-Kessel FCM (GK-FCM)‒ lograron 
identificar distorsiones elipsoidales en los 
clústeres externos de símbolos de datos y 
seleccionar dinámicamente estrategias 
de demodulación apropiadas. El enfoque 
propuesto, basado en agrupamiento, no 
requiere correcciones de desbalance en 
las ramas IQ (en fase y cuadratura) ni de 
desfase, ya que redefine las regiones de de-
cisión en función de los centroides de los 
clústeres. Los autores introducen el uso de 
índices de validez de agrupamiento (Coefi-
ciente de Partición, Separación, Xie y Beni, 
y el Índice de Dunn) para caracterizar los 
niveles de distorsión de los símbolos en 
los diagramas de constelación y establecer 
umbrales de desempeño. La combinación 
de DI y XB proporciona un criterio para de-
finir el umbral de distorsión no gaussiana. 
En particular, XB ≥ 10.7 y DI ≥ 0.015 pueden 
servir como indicadores empíricos de que 
la constelación en sistemas ópticos de ra-
dio sobre fibra (RoF) ha transitado hacia 
un régimen más estructurado en el que los 
centroides de clúster son utilizados para 
la demodulación. Los resultados experi-
mentales muestran que, en condiciones de 
alto ruido (la relación señal a ruido óptica) 
OSNR = 16 dB, el índice XB alcanza su valor 
mínimo, confirmando la sensibilidad del 
método a la distorsión inducida por rui-
do. Se observaron mejoras en la relación 
señal-ruido óptica (OSNR) de hasta 2.1 dB 
para 16-QAM y 0.7 dB para 4+12 PSK en un 
umbral de BER de 10-² en una transmisión 

sobre 78.8 km de fibra. La combinación de 
los índices DI y XB proporciona un criterio 
sólido para definir el umbral de distorsión 
no gaussiana. Estos hallazgos experimen-
tales sugieren que las métricas de vali-
dez de agrupamiento pueden servir como 
umbrales efectivos para la demodulación 
adaptativa, permitiendo la identificación 
en tiempo real de distorsiones no gaussia-
nas en sistemas de comunicación RoF.

Palabras clave: agrupamiento, 
k-means, fuzzy c-means, Gustafson-Kes-
sel, distorsión no-gaussiana, ruido de fase 
no lineal.
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INTRODUCTION 

Radio-over-Fiber (RoF) has emerged as a key enabler for next-generation wireless 
networks, offering a cost-effective and high-capacity solution for the seamless in-
tegration of optical and wireless domains. By transporting radiofrequency (RF) sig-
nals over optical fiber, RoF supports centralized processing architectures such as 
Cloud-RAN (Radio Access Networks), which are essential for ultra-dense small cell 
deployments in 5G and beyond. The low-loss and wide bandwidth characteristics of 
optical fiber make RoF particularly suitable for high-frequency millimeter-wave and 
sub-THz bands, where wireless propagation suffers from severe attenuation. Fur-
thermore, RoF simplifies the distribution of massive multiple input multiple outu-
put (MIMO) and beamforming signals, reducing the complexity and cost of remote 
antenna units. Its compatibility with existing fiber infrastructure facilitates rapid 
deployment while providing a unified fronthaul, midhaul, and backhaul platform to 
meet stringent latency and reliability requirements for applications like ultra-relia-
ble low-latency communications (URLLC) [1] and industrial Internet of Things (IoT). 
By enabling multi-band and multi-standard transmission over a single optical link, 
RoF supports the convergence of heterogeneous networks, ensuring scalable and fu-
ture-proof connectivity for 6G and beyond. The next-generation fiber-wireless com-
munications systems require flexible receiver architectures able to process any data 
rate associated with changing m-ary modulation formats according to channel state 
information. The simplest technique to generate and distribute radiofrequency (RF) 
modulated signals over fiber, commonly referred to as Radio over Fiber (RoF) ar-
chitectures, is the conventional Intensity Modulation/Direct Detection (IM/DD) [2]. 
However, it suffers from distortions due to the intrinsic nonlinear characteristics 
of the external Mach-Zehnder Modulator (MZM) needed in the electrical-to-optical 
conversion, the interaction of optical fiber dispersive effects [3], along with frequen-
cy mismatch between the RF received signal and the local oscillator (LO), after the 
optical detection stage. Moreover, several sources of noise (laser noise, shot noise, 
thermal noise, among others) and other kinds of impairments, such as harmonic 
distortion and intermodulation distortion, limit the dynamic range and decrease 
the system performance of the RoF system [4]. Detailing a specific type of distortion, 
only the fluctuations of the power and the optical phase, plus the use of single-fre-
quency lasers that do not exhibit a perfect sinusoidal oscillation of the electric field 
at their output, give rise to a nonlinear phenomenon known as phase noise (PN) [5]. 
Besides, the joint effects of laser phase fluctuation and the fiber dispersion intro-
duce a mismatch between the optical carrier and the microwave/millimeter-wave 
signals. The PN in the RoF studied scenario is introduced by the mismatch between 
the optical carrier and the transmitted radiofrequency signals that are not correla-
ted within the coherence time [6]. Therefore, this paper focuses on the impact of 
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residual phase noise (PN) on symbol constellations in intensity modulation/direct 
detection (IM-DD) radio-over-fiber (RoF) systems, where phase recovery is not per-
formed but residual PN and dispersion-induced effects in the optical and electrical 
domains still impair symbol quality, and few mitigation strategies have been repor-
ted in the state of the art. However, the demodulation methods take into account 
all distortions introduced by system devices at the transmitter and receiver, and the 
channel in the end-to-end path. The PN impact on the symbols degrades the error 
vector magnitude (EVM) and causes phase error, as a function of fiber transmission 
distance. The impact of dispersion induced by PN on signals transmitted over Sin-
gle Sideband (SSB) modulation RoF systems was characterized experimentally in [7]
we propose an analog multiple intermediate-frequency-over-fiber (multi-IFoF, [8], 
and a phase adjustment technique based on an optical spectrum processor enables 
the suppression of this effect. Several feed-forward algorithms have been valida-
ted as effective methods to mitigate the phase fluctuation of the laser sources. In a 
comparative study on three Carrier Phase Estimation (CPE) algorithms [9], including 
one-tap normalized least mean square (NLMS), the block average method, and the 
Viterbi-Viterbi algorithm, the NLMS exhibits an acceptable performance at the pri-
ce of hard step-size optimization. On the other hand, the authors in [10] propose a 
two-stage extended Kalman filtering (EKF) technique for the joint compensation of 
frequency offset (FO), linear and nonlinear phase noise, and amplitude noise in QAM 
systems. In the first stage, a coarse compensation of FO is performed using a set of 
training data symbols, and in the second stage, using the EKF, a fine compensation 
of the residual PO, PN due to laser linewidth and nonlinear effects is performed at 
the cost of higher computational effort.

Considering small improvements on threshold limits and that equalization and opti-
mization algorithms impose a strong trade-off in computational cost, some machine 
learning approaches have been applied in optical communications. In [11] and [12], 
a support vector machine (SVM) classifier is introduced to create a nonlinear deci-
sion boundary in m-ary PSK-based coherent optical systems to mitigate nonlinear 
PN. The training is performed using binary labels for different SVMs according to 
the number of symbols in the constellation and reaches a maximum transmission 
distance of 480km using a launching power of 2 dBm, at a BER of 10-3. Moreover, the 
nonlinear decision boundary can be flexibly adjusted to create an irregular shape 
and enable more precise classification. Another machine learning detector based on 
the k-nearest neighbors (kNN) algorithm is proposed in [13] to overcome mainly PN 
and nonlinear PN in zero-dispersion links and dispersion-managed links. An impro-
ved algorithm referred to as distance-weight DW-kNN is introduced, and it outper-
forms the maximum likelihood (ML) post-compensation approach. Additionally, due 
to the temporal variation introduced by mechanical perturbations in optical fiber, 
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temperature oscillation, and bias drift of the IQ components in the modulators, a 
non-Gaussian distribution in data-symbol points may shift the centroids of the recei-
ved symbols from their ideal constellation positions. To mitigate these impairments, 
an adaptive machine learning-based non-symmetrical decision technique proposed 
in [14] studies the time-varying impairments in a 16-QAM Nyquist system at 16 GBd in 
back-to-back and 250 km links. 

As reviewed before, there is a small gap for improving performance where flexible 
techniques enabled by machine learning and artificial intelligence algorithms may 
take the lead. Furthermore, considering the joint effects of system devices and the 
optical fiber phenomena during propagation, our contribution to the state of the art 
resides in the introduction of constellation fragmentation by clustering and robust 
signal demodulation (identifying non-Gaussian distortion), including noise charac-
terization over any modulated signal to minimize bit errors after de-mapping [15]. 
For testing the method, we have implemented a RoF system due to being a well-es-
tablished and cost-effective technology that exhibits channel transmission impair-
ments of both wireless and optical fiber domains. The results for two modulation 
schemes, 16-QAM and 4+12 PSK, show better performance compared to the conven-
tional demodulation technique. 

Recent studies have proposed adaptive demodulation architectures based on cluste-
ring and deep learning to mitigate nonlinear and non-Gaussian impairments more 
effectively [16]-[17]. Moreover, [18] highlights the importance of real-time metrics to 
distinguish non-Gaussian behavior in optical channels. Our contribution addresses 
this challenge by defining threshold-based metrics derived from clustering validity 
indices to dynamically identify and compensate non-Gaussian distortions.

The remainder of this paper is organized as follows: in Section 2, an introduction to 
clustering algorithms and validation indices is explained for signal demodulation; 
then, in Section 3, the Radio-over-Fiber experimental setup is presented; in Section 
4, the analysis of results and discussions are shown; and finally, conclusions and fu-
ture work are summarized in Section 5.
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METHODOLOGY

Clustering Techniques for non-Gaussian Distortion Identification and De-
modulation

Clustering

It is a type of unsupervised machine learning technique used to find homogeneous 
subgroups from a data set X, such that objects in the same group (clusters) are more 
similar than those in other groups. In the context of optical and digital communica-
tions, the clustering methods are used to properly classify each point of a data-sym-
bol constellation, which is scattered due to various imperfections of system devices 
and physical phenomena of optical fiber arising during transmission. Three cluste-
ring algorithms are explained as follows:

k-means 

It is a widely used clustering algorithm applied for phase recovery and symbol de-
modulation in optical and RoF systems [19], [20]. For modulation formats such as 
16-QAM and 4+12 PSK, it partitions the constellation into k clusters (e.g., 16 for 16-
QAM), assigning each symbol to the nearest centroid based on Euclidean distance 
and iteratively updating centroid positions until convergence. Its main advantages 
are simplicity and fast convergence; however, it assumes spherical clusters, making 
it less effective under non-Gaussian distortions or ellipsoidal symbol deformation 
caused by phase noise or dispersion.

Fuzzy c-means (FCM)

It is a soft-clustering algorithm that assigns each symbol a degree of membership 
across multiple clusters, improving robustness in noisy or overlapping constella-
tions [21]. It minimizes a weighted objective function where memberships and clus-
ter centroids are iteratively updated, allowing finer separation of distorted symbols 
compared to hard clustering. For modulation formats such as 16-QAM, this flexibility 
helps handle moderate non-Gaussian effects, especially in outer symbols affected by 
phase noise or dispersion. However, its higher computational cost and reliance on 
isotropic distance metrics limit its effectiveness under severe ellipsoidal distortions, 
where covariance-adaptive approaches like GK-FCM become more suitable.
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Gustafson-Kessel Clustering

The Gustafson-Kessel algorithm [22] associates each sample-point with its centroid 
and its covariance. The main feature of this clustering algorithm is its distance, 
which adapts to the shape of the cluster by estimating the cluster covariance matrix 
and adjusting the distance accordingly [23]. The objective function Jm of the FCM-GK 
algorithm is defined as 

 𝐽𝐽𝑚𝑚 = ∑ ∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝐷𝐷𝑖𝑖𝑖𝑖2𝑁𝑁
𝑘𝑘=1

𝑐𝑐
𝑖𝑖=1 𝐴𝐴𝑖𝑖  (1) 

 

	
(1)

	

However, since this function is linear concerning the distance norm matrix Ai​, direct 
minimization would lead to trivial, non-informative solutions (e.g., Ai → 0). To ensure 
a meaningful optimization, Ai ​is constrained by fixing its determinant |Ai|=1, which 
preserves cluster volume while allowing the matrix to adapt its shape (covariance) 
to better capture ellipsoidal shape distortions in the symbol-data. This makes FCM–
GK [24] particularly well-suited for the non-Gaussian, phase-noise-distorted clusters 
observed in RoF constellations [25]. Applied to demodulation in optical RoF systems, 
FCM–GK has proven to outperform k-means and soft FCM in handling anisotropic 
symbol deformation under transmission impairments, achieving OSNR gains up to 
~2.9 dB for 16QAM and ~1.4 dB for 4+12 PSK without requiring separate IQ imbalance 
or phase-offset compensation.

Validation Indexes

A common approach for quantitatively evaluating a data partition is to use relative 
validity indexes, where each candidate partition obtained by a clustering algorithm 
is compared to other partitions of the same data set, making it possible to estima-
te the number of clusters from data. Therefore, for validation purposes, we assess 
different functions that provide cluster validity measures and goodness for the ob-
tained partitions [24]. Different scalar validity measures have been proposed in the 
literature, but we focus on the indices described in the Fuzzy Clustering and Data 
Analysis Toolbox [26] as follows: 

Partition Coefficient (PC): measures the amount of overlap between clusters. It is 
defined as

( ) ( )2

1 1

1 c N

ij
i j

PC c
N

µ
= =

= ∑∑
		

(2)
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Where µij is the membership of the data-point j in the cluster i. The optimal number 
of clusters is the minimum value. 

Partition Index (SC): is the ratio of the sum of compactness and separation of the 
clusters. It corresponds to the sum of individual cluster validity measures normali-
zed by the fuzzy cardinality of each cluster.

( )
( ) 2

1
2

1
1

mN
c ij j ij

c
i i k ik

x v
SC c

N v v

µ
=

=
=

−
=

−

∑∑
∑ 		

(3)

SC index is useful when comparing different partitions with an equal number of 
clusters, and a lower value indicates a better partition. 

Separation index (S): On the contrary of partition index (SC), the separation index 
uses a minimum-distance separation for partition validity. It is defined by

 𝑆𝑆(𝑐𝑐) = ∑ ∑ (𝜇𝜇𝑖𝑖𝑖𝑖)𝑁𝑁
𝑗𝑗=1

2‖𝑥𝑥𝑗𝑗−𝑣𝑣𝑖𝑖‖
2𝑐𝑐

𝑖𝑖=1
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑘𝑘(‖𝑣𝑣𝑘𝑘−𝑣𝑣𝑖𝑖‖2)

 (1) 

 

	
(4)

The Xie and Beni’s index (XB): represents a fuzzy-validity criterion based on a func-
tion that identifies overall compact and separate fuzzy c-partitions. 
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(5)

The more separate the clusters, the larger the minimum distance between cluster 
centroids, minimizing the value of the XB index.

The Dunn index (DI): measures compactness (maximum distance in between data 
points of clusters) and cluster separation (minimum distance between clusters). The 
following equation indicates how to obtain the index:
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(6)

All these cluster validation indices will be applied to determine the quality of a given 
clustering, and the computational effort will decrease, knowing the correct number 
of clusters, for the case of 16 symbols. 

Demodulation of Non-Gaussian Constellations in Optical Communications

The general setting for the clustering-based demodulation (only FCM-GK is explained 
for simplicity; the procedure is similar for k-means and FCM) is applied as follows: 
i) the FCM-GK algorithm requires as inputs, the data-symbol observations and the 
number of clusters vi (predefined value of 16 for 16-QAM modulation format), and 
their expected centroids ideal locations of the 16-QAM or 4+12 PSK constellations. 
The data symbols correspond to bidimensional (2-D) vectors x(k) = [xi(k) xq(k)], where 
xi and xq are the in-phase and quadrature (IQ) component samples projected on the 
complex plane. From this data-set, the weighted exponent m = 2 with a tolerance 
criteria ε < 0.001 as proposed in [27], and the partition matrix U are all initialized 
to avoid biasing the clustering process towards pre-defined centroids and to ensure 
convergence independent of prior knowledge of symbol positions; ii) the centroid of 
clusters with distortion are estimated as indicated in equation (3) and, as shown in 
Fig. 1a; iii) after that, membership values are obtained for each data concerning the 
closest centroid, calculating the distance norm (k-means and FCM uses Euclidean 
norm, and, FCM-GK uses Mahalanobis distance norm, but constrained to fixed de-
terminant of A equal to 1); iv) the matrix fuzzy partition U is updated, and finally, v) 
the criterion for termination is calculated as ||U(l)-U(l-1)1|| < ε, if convergence is achie-
ved, the algorithm stops; if not, it returns to step iii (as shown in Figure 1a with the 
center of mass being a marker ×). Figures 1b and 1c show the 16-QAM and 4+12 PSK 
constellations after the clustering process, including the update of centroids until 
convergence [25]. Besides, as observed in Figures 1b and 1c, the external symbols su-
ffer non-Gaussian distortion while the inner symbols exhibit a quasi-circular shape. 
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1a) 1b) 1c)
Source: own elaboration. 

Fi g u r e 1. Clustering of data symbols: a) General clustering principle, 
b) clustering of 16-QAM, and c) clustering of 12+4 PSK

These effects degrade the performance when a conventional demodulation grid is 
used. Besides, the lower Euclidean distance among clusters for the 4+12 PSK conste-
llation; for that reason, a higher BER will be introduced.

Experimental Setup

Figure 2 shows the schematic diagram for the RoF system setup as a single-channel 
system. A pseudorandom binary sequence (PRBS) with a length of 218 at a baud rate 
of 250MBaud was generated to deliver 1Gb/s in a single-channel and single-polariza-
tion case. The pulse shaping uses a Root Raised Cosine (RRC) filter with eight taps 
and a roll-off factor commonly used of α=0.2. After that, the modulation process was 
performed by encoding 4 bits per symbol (24 = 16 symbols) for both 16-QAM and 12+4 
PSK. Then, the up-conversion stage translated the baseband signal to a radio fre-
quency (RF) carrier at 6GHz. This signal was digitized through a Fujitsu LEIA board 
with a sampling frequency of 64 GSa/s and entered into the Mach Zehnder modula-
tor RF inputs, and the RF signal was propagated over a spool of fiber with a length of 
78.8 km. As an optical source, we used a distributed feedback (DFB) laser (linewidth 
100kHz) emitting at 1550nm [28]. Amplified Spontaneous Emission (ASE) noise was 
injected and filtered by an optical bandpass filter (OBPF) with a bandwidth of 3.5 nm. 
The ASE noise is used to determine the functionality of the three clustering algori-
thms in the face of different OSNR conditions. A variable optical attenuator (VOA) 
was adjusted to set the power of -5 dBm at the input of the optical-to-electrical con-
verter with a bandwidth up to 13GHz. Then, the electrical signal was entered into a 
digital oscilloscope at a sampling rate of 25 GSa/s, and the captured data was stored 
for offline processing. The down-conversion stage translates the RF signal to base-
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band, and then the matched filtering with the same prototype characteristics as the 
transmitter side filter is applied.

Source: own elaboration. 

Fi g u r e 2. RoF experimental Setup

The demodulation stage, applying conventional rectangular grid demodulation, 
k-means, FCM, and GK-FCM clustering-based methods, is evaluated, varying the op-
tical signal-to-noise ratio (OSNR) from 16 dB to 36 dB as a function of bit error rate 
(BER). 

RESULTS AND DISCUSSION

The demodulated constellations exhibit strong non-Gaussian effects on clusters, 
due to the moderate adopted baud-rate, which translates to a long symbol duration. 
This symbol duration must be compared to the coherence time (tc) between local 
oscillator and the incoming signal from the transmitter (ideally, a baud rate of 250 
MBd needs a (tc) around 4 ns). The clustering-based demodulation techniques mi-
tigate the phase noise introduced by the mismatch between the optical carrier and 
the transmitted radiofrequency signals that are not correlated within the coherence 
time [11] of the local oscillator for the specific baud rate (250 MBd) used in the expe-
rimental setup. 
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3a) 3b)

Source: own elaboration. 

Fi g u r e 3. BER performance at 1 Gb/s after 78.8 
km span for a) 16-QAM and b) 4+12 PSK

Observing Figure 3a, the 16-QAM constellation shows higher separation (based on 
Euclidean distance metric) among the data-symbol points and a non-Gaussian effect, 
mainly in the corners of the external grid, where clusters with ellipsoidal shapes will 
overlap if the conventional grid is used. In Figure 3a, we plot the BER performance 
versus OSNR for 16-QAM. The continuous line with the circle marker corresponds to 
the conventional demodulation method. The error performance for FCM is shown 
with the dot-dashed line and a diamond marker; with a square marker, the dotted 
line shows the k-means algorithm. Finally, with a triangle marker and dot-dashed 
line, the GK-FCM method, the constellation in the inset shows the clusters and reco-
vered symbols of a 16-QAM constellation with the FCM-GK method. k-means and GK-
FCM perform a similar gain of 2.1 dB in the OSNR scale compared with conventional 
demodulation of 16QAM. However, beyond 26 dB, the gain margin for GK-FCM over 
k-means holds around 1dB for the rest of the curve up to 36 dB. The constellation in-
set shows the data-symbol distribution for GK-FCM, obtaining an error vector mag-
nitude (EVM) of 20.1% for an OSNR of approximately 25 dB. However, the k-means 
algorithm performs better under low OSNR levels. 

The proposed method is designed to identify constellation centroids under non-Gaus-
sian distortion by defining a threshold derived from clustering validity metrics, and 
thus relies on symbol quality evaluation rather than explicit bit-level comparison. In 
the RoF scenario impaired by PN, the EVM remains an appropriate performance in-
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dicator, as it quantifies the geometric deviation of received symbols from their ideal 
positions and is commonly transformed into BER using well-established analytical 
relationships reported in the literature [27]. This approach is valid here because 
clustering-based demodulation directly redefines decision regions based on centroid 
estimation without altering the underlying constellation geometry; therefore, the 
EVM continues to reflect symbol quality even under the observed phase noise and 
nonlinear distortions.

( )
( )2

2 1 3
log ( ) 2 1

dB
M EVMBER erfc

M M

−  ×
=   −  			

(7)

Figure 3b presents the BER performance results of 12+4 PSK modulation format with 
the same type of lines and markers used for the 16-QAM. The curve for the FCM algo-
rithm shows the worst performance compared with the other methods. Possibly this 
is due to the non-Gaussian shape of the clusters (ellipsoidal shape), a higher overlap, 
and hence a lower Euclidean distance among centroids. Similar performance curves 
are shown for the k-means and conventional demodulation algorithms. However, 
the GK-FCM algorithm improves the performance by 0.7 dB for the BER threshold of 
10-2. The constellation in the inset of Figure 3b is obtained with the FCM-GK algori-
thm; it has an EVM equal to 20.9% and exhibits a lower separation among clusters in 
the external ring. However, clustering-based demodulation using GK-FCM performs 
better in both cases, 16-QAM and 12+4 PSK modulation formats, over 25 dB in the 
OSNR scale. To evaluate the integrity of the clustering-based demodulation algori-
thms, we perform estimation for the different validation indices introduced, aided 
by the Matlab (TM) functions available for the Fuzzy Clustering and Data Analysis 
Toolbox [26]. 

In Table I, the results are presented for the validation indexes under the same OSNR 
levels (16, 26, and 36 dB) using the conventional demodulation technique and the 
three evaluated clustering demodulation methods. The first three rows show the 
validation indexes only for three OSNR levels (16dB for high-noise level, 26 dB for 
medium-noise level, and 36 dB for low-noise level). We can observe that a better 
classification is performed for the lower-noise level at 36 dB, attaining a PC index of 
0.81 using GK-FCM; this index decreases for the other noise levels. Also, the SC index 
reflects a better partition with the lowest index value for 36 dB and increases with 
a higher noise level (reduced OSNR). The S index has the lowest distance separation 
for the low-noise scenario at 36dB, and the other indices’ values are proportional to 
the noise increase.
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Ta b l e 1. Index validation using clustering-based demodulation for 16-QAM

OSNR (dB) PC SC S XB DI Winner 
Algorithm Criteria

36 0.8100 0.2170 1.295E-04 11.11 0.201

26 0.7210 0.3097 2.031E-04 10.72 0.0049 GK-FCM The higher value is the best.

16 0.6227 0.4321 2.792E-04 9.81 0.0047

26 0.5218 0.2863 2.241E-04 9.85 0.0032 FCM The lower value is the worst.

26 0.7178 0.2987 2.578E-04 10.43 0.0045 k-means Medium value

Source: own elaboration. 

The XB index shows that it minimizes the index value for higher-noise levels (a va-
lue of 9.81 for the highest noise OSNR level), and it is consistent because the opti-
mal number of clusters should minimize this index, showing a better separation and 
compactness for the clusters. The DI for GK-FCM is higher at low noise levels and va-
lidates the “compact and well-separated clusters” for the whole data symbol received 
and demodulated. For FCM and k-means, all the indices are consistently compared 
with the GK-FCM obtained values; the behavior is well represented in the curves of 
Fig. 3. In Table 2, we show the index values for the 12+4 PSK modulation scheme.

Ta b l e 2. Index Validation using clustering-based de-modulation for 12+4 PSK

OSNR (dB) PC SC S XB DI Winner 
Algorithm Criteria

36 0.7571 0.2353 1.34E-4 18.03 0.0169

26 0.6963 0.2886 1.65E-4 16.75 0.0045 GK-FCM The higher value is the best.

16 0.6592 0.3643 2.09E-4 12.57 4.77E-4

26 0.6623 0.3116 1.92E-4 14.38 0.0013 FCM The lower value is the worst.

26 0.6857 0.2812 1.59E-4 16.37 0.0038 k-means Medium value

Source: own elaboration. 

Similarly to the 16-QAM, 0.7571 is the highest level obtained for the PC index, decrea-
sing for higher noise levels. The SC index has a lower value for the lowest noise level, 
and the index increases with the reduction of the OSNR value. For the S index, the 
lowest value for an OSNR value of 26 dB, comparing the three algorithms, is 1.34e-04 
and corresponds to GK-FCM. The XB index related to the known number of clusters 
produces a minimum value for the highest noise level of 16 dB in the OSNR axis. Fi-
nally, DI has the highest value (0.0169) for the lowest noise level at 36 dB with the 
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GK-FCM. Despite the lower distance among centroids, the validation indices suggest 
the algorithm identifies compact and well-separated clusters. During symbol-demo-
dulation, k-means outperforms FCM over 1 dB, and exhibits a higher index of 0.0045 
for the DI. From these results, advanced clustering can be used for the identification 
and characterization of distortion in data symbols. However, if Gaussian behavior is 
identified, the receiver must be set to perform clustering-based demodulation using 
k-means or the conventional demodulation algorithm because the fixed grid provi-
des similar error performance as demonstrated. However, if non-Gaussian shapes 
are observed over the constellation, then a better approach to improve the system 
performance is to use the FCM-GK method because it improves the noise tolerance by 
extending the decision boundaries. The observed thresholds, such as PC > 10.7 and 
DI > 0.015, can be used as indicators to switch from conventional demodulation to 
clustering-based strategies, offering a dynamic and adaptive receiver approach [29]. 
These findings are consistent with recent approaches that propose adaptive cluste-
ring-based demodulation in nonlinear optical channels [12], [30], [31], validating the 
effectiveness of fuzzy clustering in scenarios with high phase noise and dispersion. 

This study demonstrates that clustering validity indices are not only useful for eva-
luating demodulation quality but also serve as real-time indicators for switching de-
modulation strategies. Future optical receivers could benefit from integrating such 
threshold-based decision mechanisms [32]. To evaluate the presence of nonlinear 
distortion in the received symbol constellations, two cluster validity indices were 
analyzed: the Dunn Index (DI) and the Xie-Beni Index (XB). The Dunn Index pre-
sents a clear transition behavior. While the values remain relatively low at 16 dB 
(DI = 0.0047) and 26 dB (DI = 0.0049), an increase is observed at 36 dB (DI = 0.201). 
This change of slope indicates that the clusters, particularly those associated with 
the outer symbols of the constellation, become significantly more compact and we-
ll-separated as the OSNR improves. In particular, XB 10.7 and DI ≥ 0.015 may serve as 
empirical indicators that the constellation has transitioned into a more structured, 
linearly behaving form [31] suitable for traditional demodulation. This suggests that 
the system moves from a distorted, non-Gaussian symbol distribution to a clearer, 
Gaussian-like configuration beyond this point. The Xie-Beni index, on the other 
hand, shows a more gradual trend, with values of 9.81, 10.72, and 11.11 at 16, 26, and 
36 dB, respectively. Although this index does not show a sharp inflection, its consis-
tent increase also reflects an improvement in cluster definition, as XB is inversely 
proportional to clustering quality. Taken together, these results suggest that OSNR ≈ 
26 dB can be considered a practical threshold for identifying the onset of significant 
geometric reorganization in the symbol constellation for RoF systems. Below this 
threshold, the outer symbols are still affected by overlapping and nonlinear distor-
tions at a BER level of 10-2. Above this threshold, the constellation geometry begins 
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to stabilize, and the clusters become more distinguishable, particularly in terms of 
compactness and separation.

Finally, to assess the computational efficiency of the clustering algorithms, we 
analyzed their iteration counts and convergence behavior rather than raw execution 
time, which is implementation and hardware-dependent. The k-means algorithm 
required the fewest iterations on average, consistent with its lower per-iteration 
complexity of O(nkd), where n is the number of samples, k is the number of clusters, 
and d is the dimensionality. In contrast, FCM and GK-FCM involve additional mem-
bership updates and covariance matrix computations, resulting in higher theoreti-
cal complexity, approximately O(nkd) per iteration for FCM and O(nkd2) for GK-FCM. 
Despite this overhead, GK-FCM demonstrated superior performance in handling 
ellipsoidal, non-Gaussian cluster shapes, particularly for the 12+4 PSK format, where 
Euclidean-distance-based k-means degraded more significantly. These observations 
underscore the trade-off between computational load and improved demodulation 
accuracy when employing advanced fuzzy clustering methods in distorted constella-
tions. Although covariance matrix computation increases per-iteration complexity 
and processing time, this cost is balanced by the removal of conventional equaliza-
tion steps, since IQ imbalance and phase noise are inherently mitigated through the 
clustering-based demodulation.

CONCLUSIONS

We proposed and experimentally validated advanced clustering-based techniques for 
distortion identification and symbol demodulation in 16-QAM and 4+12 PSK optical 
constellations. Among the evaluated methods, the Gustafson-Kessel fuzzy c-means 
algorithm (GK-FCM) exhibited superior performance in detecting and compensating 
non-Gaussian distortions, particularly under moderate to high OSNR conditions. 

The use of clustering validity metrics enabled the quantification of cluster compact-
ness and separation, offering a practical way to detect nonlinear distortion patter-
ns through threshold analysis. Experimental analysis (Tables 1 and 2) shows that 
the combined behavior of DI and XB indices establishes a practical threshold for 
identifying non-Gaussian distortion, with DI ≥ 0.015 and XB ≥ 10.7 corresponding to 
the OSNR transition where clustering-assisted demodulation improves performan-
ce. These indices are therefore valuable tools for designing adaptive demodulation 
strategies in optical receivers under varying OSNR conditions. The obtained results 
confirmed that these metrics, when used as distortion indicators, support adaptive 
switching to more adaptive clustering-based demodulation strategies. This decision 
mechanism led to OSNR gains of up to 2.1 dB for 16-QAM and 0.7 dB for 4+12 PSK at a 
BER of 10-2, enhancing overall receiver performance without requiring phase-offset 
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or IQ imbalance compensation. These findings demonstrate that clustering validity 
indices not only improve demodulation performance but can also serve as indicators 
of nonlinear distortion, supporting the development of intelligent, channel-aware, 
non-Gaussian noise-tolerant optical systems.
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