
Abstract

The corrugator scheduling problem is a difficult problem due to a wide variety 
of parameters and optimisation objectives that have to be accounted for and 
the relationships among them. Majority of solution techniques proposed so far 
only deal with minimizing either, the trim waste or pattern changes, this paper 
proposes a multi-objective evolutionary algorithm to optimize the WPL objective 
(weighted planning level) and the cost objectives. Computational experiments 
were conducted and results were compared against the current shop scheduling 
method used at a real-life corrugator manufacturing facility. A series of experiments 
were also conducted to determine the evolutionary algorithm parameters. The 
improvement on performance metrics encourages us to actually implement the 
algorithm at the factory.
Key words: SCHEDULING; Genetic Algorithms; multi-objective 
optimization; corrugator manufacturing.

Resumen

The corrugator scheduling problem is a difficult problem due to a wide variety 
of parameters and optimisation objectives that have to be accounted for and 
the relationships among them. Majority of solution techniques proposed so far 
only deal with minimizing either, the trim waste or pattern changes, this paper 
proposes a multi-objective evolutionary algorithm to optimize the WPL objective 
(weighted planning level) and the cost objectives. Computational experiments 
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1.  INTRODUCTION

The manufacturing of corrugated cardboard boxes consists of the stages 
of pattern layout and finishing (i.e. printed, folded and glued) according 
to specifications that may vary between product styles. Because of its 
complexity for production management, the most important part of this 
manufacturing process is the pattern-layout stage. In the literature, the 
problem of pattern layout optimization is known as the two-dimensional 
cutting-stock problem. Solution procedures are traditionally based on 
linear programming models or heuristic algorithms. In real-life practice, 
however, some plants still schedule corrugator manually. The major 
reason is that analytical methods and good heuristics do not fully capture 
the problem complexity. In effect, a pattern layout that is optimal or near-
optimal in terms of trim waste may lead to bottlenecks at the finishing 
stage or to sub-optimal scheduling solutions for the whole plant. In 
addition, these troubles on production also concern the delivery of final 
product, affecting in this way due-date related performance indexes.

In this paper, we are interested in proposing a solution approach for the 
corrugator scheduling problem based on evolutionary algorithms in order 
to optimise the WPL and cost. The WPL index refers to delivery due-dates 
performance, finished machines queue management and client-related 
importance. The 3 aspects mentioned above are used as inputs variables of 
a fuzzy inference system which will calculate an importance (IMP) factor 
for order that has to be scheduled (Klir 1995). This factor will be used to 
calculate the overall WPL index. The cost refers to the running cost, the 
roll change and pattern change cost, waste trim cost and upgrading cost.

Due to the complexity of parameters to take into account and to the 
relation between these parameters, the corrugator scheduling problem is 
a combinatorial optimisation problem. Since an evolutionary algorithm 
(EA) is an intelligent computer-based optimization technique that has 

were conducted and results were compared against the current shop scheduling 
method used at a real-life corrugator manufacturing facility. A series of experiments 
were also conducted to determine the evolutionary algorithm parameters. The 
improvement on performance metrics encourages us to actually implement the 
algorithm at the factory.
Palabras claves: Scheduling ; Genetic Algorithms; multi-objective 
optimization;      corrugator manufacturing.
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provided very good results when applied to solve other combinatorial 
and engineering optimisation problems (Back 1995; Fogel 1995), it seems, 
thus, interesting to apply EA to solve the corrugator scheduling problem.

The remainder of this paper is arranged as follows. A review of 
relevant previous research works on the corrugator scheduling problem is 
presented in section 2. The principal concepts of evolutionary algorithms 
(EA) are presented in section 3. Section 4 describes the mixed integer multi 
objective programming corrugator scheduling problem formulation. 
Sections 5 and 6 are respectively devoted to the detailed description of the 
proposed EA and to present the results of the computational application 
against the current scheduling method used in the factory. Finally, section 
7 presents some concluding remarks.

2.  RELEVANT LITERATURE

In the literature, researchers have traditionally referred the corrugator 
production scheduling problem as the two-dimensional cutting-stock 
problem (also named the trim or trim-waste problem). This problem is a 
particular case of the cutting and packing problems (Dyckhoff 1990; Sweeney 
and Paternoster 1992; Hooper and Turton 2000; Hooper and Turton et al. 
2001). A state-of-the-art survey on solution approaches for the 2D cutting-
stock problem can be found in (Hinxman 1980). The 2D cutting-stock problem 
is described as follows. A factory produces a material such as linerboard in 
long rolls of fixed width. Customers order specify a desired number of sheets 
of a certain length and width. The widths of the cut sheet rarely allow full 
utilisation of the roll, resulting in trim waste, which often is not salvageable. 
The possible configurations of pattern layouts are as follows:

The objective is to arrange orders so the sum of sheet widths simultaneously 
being cut will most closely equal the roll width. This formulation applies 
to the manufacture of corrugated boxes because the two corrugator knives 
operate independently. Thus, the choice of two orders to be run at the same 
time is unaffected by the sheet length of either. A feasible solution involves 
a set of cutting patterns and the number of times each pattern will be used 
(a cutting pattern is simply a combination of sheet widths whose sum 
does not exceed that of the roll). Pattern generation can easily become an 
overwhelming task since corrugator scheduling also requires the sequence 
in which the chosen patterns will be run. A complete description of the 
corrugator scheduling problem is provided in (Cloud 1995; Wiers 1997)
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Figure 4. Pattern-Layout type 4. Upper view

Early works on the cutting-stock problem are based on linear 
programming formulation in order to minimise trim-waste (Paul and 
Walter 1954; Eisemann 1957; Gilmore and Gomory 1961; Gilmore and 
Gomory 1963; Wade 1964; Haessler 1975; Dyckhoff 1981; Haessler and 
Talbot 1983; Acevedo et al. 2003). Although some of these formulations 
are still very popular and are used in various commercial computational 
packages, they lead to a big solution space and have difficulties in dealing 
with non-linear problems, which are most common in the real world. As 
a result, heuristic solution procedures have become increasingly popular 
in the literature in order to consider more practical situations in which it 
is needed a balance between the waste objective and customer service, 
production costs, and machine and workforce utilisation (Van Wormer 
1963; Hinxman 1980; Haessler 1975; Haessler and Talbot 1983; Bookbinder 
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and Higginson et al. 1986). The efficiency and effectiveness of heuristic 
solution procedures, however, depend heavily on the heuristic used. 
Finding good heuristics is often as difficult as solving the problem itself 
(Liang 2002). When applied to the corrugator scheduling problem many 
heuristic approaches to the cutting-stock problem have been unsuccessful 
either because they attempted to generate patterns sequentially and had 
trouble with trim loss at the end of a sequential procedure, or because they 
used linear programming to minimise trim, and performed poorly with 
regard to number of pattern changes and order congruity (Haessler and 
Talbot 1983; Bookbinder and Higginson 1986).

The relationship between customer service and trim waste was studied 
in (Bookbinder and Higginson 1986) using a simulation model. Instead 
of an optimisation approach, these authors concentrate on to understand 
the relationship between those different (and contradictory) objective 
functions. In this paper, we propose an evolutionary algorithm that 
optimises the WPL index, designed by the authors and cost.

3.  EVOLUTIONARY ALGORITHMS

An evolutionary algorithm (EA) is a problem solving technique that 
uses the concepts of evolution and heritage to produce good solutions 
to complex problems that typically have enormous search spaces and are 
therefore difficult to solve. A well-designed EA allows for the efficient and 
effective exploration and exploitation of the problem’s search space of 
feasible solutions in an effort to identify the global optima, or near optimal, 
solution to difficult problems. Early applications of EA’s are found in the 
literature to solve complex combinatorial optimisation problems (Back 
1995; Fogel 1995).

EA’s create and manipulate a group of possible solutions referred to 
as a population. Each possible solution within the population is called an 
individual. The population undergoes change throughout the run of the 
EA thereby evolving the individuals toward a best solution. Within the 
EA, the population loops through a series of processes a number of times; 
each executed loop is known as a generation. These processes include an 
evaluation process, an alteration process, and a selection process (Lang Fang 
1994; Deb 1997). These processes may occur in various orders; however, 
each is required at each generation (Michalewicz 1992). The evaluation 
process uses an evaluation function that assesses the relative fitness of 
each individual of the population at each generation. In addition, at each 



78 Ingeniería & Desarrollo. Universidad del Norte. 21: 73-92, 2007

Germán A. Velásquez D., Gisella Bellini, Carlos D. Paternina-Arboleda

generation a number of individuals are subjected to some form of change. 
These alterations are manifested through the use of genetic operators. 
Genetic operators can be either mutation operators, which introduce small 
changes within a single individual, or crossover operators, which cut and 
paste different parts from two or more individuals together in order to 
create new individuals called offspring. The probability of an individual 
experiencing some form of transformation within any given generation is 
subject to the predefined parameters of the probability of mutation, and/
or the probability of crossover. Through this process, some, or all, of the 
individuals are altered and used to create a new population for the next 
generation. Finally, the EA uses the evaluated fitness of each individual to 
promote the survival of the best individuals to the next generation. This 
use of selective pressure encourages the population to converge to a good 
quality solution. The EA will run for a predetermined maximum number 
of generations or until some specified terminating condition is met.

When designing EA’s, parameters to consider include population size, 
maximum number of generations, and probability of mutation and/or 
crossover. Each EA is unique in its design with regard to several important 
elements. Some of these elements include data structure, genetic operators, 
method for creating the initial population, constraint handling techniques, 
evaluation function, selection method, generational policy, parameters, 
and terminating conditions. However, regardless of the differences, all 
EA’s attempt to evolve the individuals within the population through the 
use of genetic operators and selective pressures to converge at a suitable 
solution to complex problems.

4.  FORMULATION OF A MIXED INTEGER MULTI-OBJECTIVE 
  PROGRAMMING CORRUGATOR SCHEDULING PROBLEM

The following index set, parameters, decision variable and variables are 
considered. An element is defined as a possible cutting pattern layout that 
will produce one of the two orders used completely. 

The cutting patterns that create a solution belong to a previously 
generated set of cutting patterns. The former set must meet the following 
conditions:

- The side trim of every cutting pattern must oscillate between the 
maximum and minimum levels allowed. These levels are determined 
by the corrugator’s scheduler.
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- Orders longer than 300 meters must be combined within a cutting pattern 
no shorter than 300 meters.

The solution of the corrugator scheduling problem will be a subset 
of elements chosen from the element set that minimizes total cost and 
maximizes the WPL index.

Index set
i Index for orders, for all i=1,2,3…I.
j Index for elements, for all j=1,2,3…J.
k Index for roll size, for all k=1,2,3…K.

Parameters
impi  Relevance value of order i.
Q_orderedi Quantity of order i
aij  Quantity of order i produced in element j
Crun  Corrugator running cost per hour
bj  Lineal meters of element j
Cpaper_c Paper change cost (includes time cost and waste cost)
Cslit_c  Slit change cost (includes time cost and waste cost)
Ctrim  trim cost per squared meter
areai  Blank area in squared meter of order i.
Cgrade_sched Square meter cost of the grade scheduled.
Cgradei Square meter cost for grade of order i

Decision variable

xj Proportion of element j chosen in the schedule. 0 ≤ xj ≤ 1.

Variables

€ 

Mi =
1, Q_orderedi ∗0.95 ≤Q_ schedi ≤Q_orderedi ∗1.15
0, Otherwise

 
 
 

,  ∀i

€ 

Ni =
1, Q_ schedi <Q_orderedi ∗ 0.95
0, Otherwise

 
 
 

,  ∀i

run_time corrugator running time
paper_c Number of paper changes
slit_c Number of independent slit changes
yk  is 1 if roll size k is used, 0 otherwise
zj  is 1 if  element j is used, 0 otherwise
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4.1. Problem formulation

The mixed integer multi-objective programming corrugator scheduling 
problem can be formulated as follows:

€ 

max Mi ∗
impi

impi
i=1

I

∑
+ 1
I

 

 

 
 
 
 

 

 

 
 
 
 

+ Ni *
Q_ schedi
Q_orderedi

∗ impi

impi
i=1

I

∑

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 i=1

I

∑

 

(1)

€ 

min Crun ∗ run _ time + Cpaper _ c * paper_c + Cslit _ c * slit _c + Ctrim ∗ trim + Cup
 (2)

€ 

Q_ schedi = aij ∗ x j
j

J

∑  (3)

€ 

Q_ schedi ≤Q_orderedi *1.15  (4)

€ 

run _ time =
b j ∗ x j( )

0.01∗ b j ∗ x j( ) + 52.6

 

 
 
 

 

 
 
 j=1

J

∑  (5)

€ 

paper_c = yk
k=1

K

∑  (6)

€ 

slit _c = z j − paper_c
j=1

J

∑  (7)

€ 

trim =
b j * x j * roll_w j( )

j=1

J

∑

b j * x j( )
j=1

J

∑
 (8)

€ 

Cup = C _ gradei −Cgrade _ sched( ) * aij * x j * areai[ ]
j=1

J

∑
i=1

I

∑
 (9)

Objective function (1) maximices the WPL index
Objective function (2) minimices the total cost.
Constraint function (3) calculates the quantity schedule for each order.
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Constraint function (4) puts restriction on quantities produced of each 
order.
Constraint function (5) calculates the running time in hours needed for 
the corrugator to finish the schedule.
Constraint function (6) calculates the number of paper changes 
needed.
Constraint function (7) calculates the number of slit changes needed.
Constraint function (8) calculates the trim in squared meters produced 
by the schedule.
Constraint function (9) calculates the upgrading cost produced by the 
schedule.

5.  CPSEA: AN EVOLUTIONARY ALGORITHM 
  FOR CORRUGATOR SCHEDULINg

In a broad way, this multi-objective algorithm seeks to improve the 
following two objectives: Cost and the WPL index. Cost includes the four 
most relevant types of cost associated with corrugator operation: Running 
cost, change cost, upgrading cost and side trim cost. The WPL index is 
calculated based on the IMP value that is exclusive for each order. The IMP 
value represents the revelevance or urgency for planning a determined 
order. In real corrugator planning, the urgency for planning a determined 
order is usually determined in an implicit way by the planner’s experience 
and knowledge. For the CPSEA, The IMP value is calculated using a fuzzy 
inference system. This FIS captures the experience and knowledge of a 
real life planner, so the need for subjective qualifications is eliminated. The 
input variables of the FIS are: Due date, queue size of converting machines 
and order final price. The algorithm will provide an order combinations 
set for a particular grade (combination of liner and medium paper types 
required to provide specific product properties to the cardboard) that will 
correspond to a corrugator schedule.

The main loop of CPSEA is as follows:

STEP 0. Initialization: Generate an initial population pob_arc0 and 
create the empty archive arc = φ. Set t = 0.

STEP 1. Increment generation counter (t = t + 1).
 If t ≥ 1 then create the parents and sons set, pob_arct. 
 pob_arct = arct + pob_cromt
 Where arct represents the parents  set y pob_cromt represents 

the sons set.
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STEP 2. Fitness assignement: Calculate fitness values --fitness_total-- 
of individuals in pob_arct. Perform the sharing function on 
individuals in pob_arct and update fitness_total.

STEP 3. Sort in descendent way the set pob_arct by fitness_total y copy 
to the set arct+1 the first arc_size individuals.

STEP 4. Termination. If t = max_gen then stop the algorithm.
STEP 5. Selection: Perform tournament selection without replacement 

on arct+1.  k = arc_size / 10.
STEP 6. Recombination. Apply single-point recombination operator. 

Then, apply uniform recombination operator. Set pob_cromt+1 
to the resulting population.

PASO 7. Mutation: Apply pattern-layout mutation operator and 
proportion mutation operator to pob_cromt+1. Go to STEP 1.

5.1.  Solution representation

Each order combination in a corrugator schedule consists of several 
cutting patterns, which define the way one or more orders are going to 
be cut. Besides, every scheduling solution must determine the following 
information:

- Number of cutting patterns to run in the corrugator.
- The length of every cutting pattern.

A scheduling solution will be thus represented as a vector of integer 
number denoting the identification of the selected cutting patterns, and as 
a vector of numbers ranged between 0 and 1 representing the proportion 
of the total length to be produced for each selected cutting pattern.

It is to notice that the total length of a particular cutting pattern will 
be determined by the first of the two orders that completes its particular 
number of units requested. Hence, we can deduce the following 
statements:

- A solution will be represented by two chromosomes.
- The chromosomes will not necessarily have the same size because two 

solutions may be formed by a different number of cutting patterns.

The characteristics of the possible cutting patterns are explained in 
section 4.
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5.2.  Initialisation

The following heuristic procedure was developed in order to create the 
initial population of the EA:

1 Define the maximum and minimum side trim allowed.
2 Based on the parameters defined in the previous step, generate the 

set of acceptable cutting patterns. That is, all possible combinations in 
pairs of orders to cut whose side trim are between the maximum and 
the minimum allowed.

3 Calculate the length of the acceptable cutting patterns.
4 Do until the proportion planned of a random number of orders to be 

planned is at least 100%:
4.1 Choose randomly an acceptable cutting pattern, which has not been 

chosen before, and its length.
4.2 Calculate the proportion planned of each order to be planned.

5.3.  Fitness function evaluation

Fitness_total in STEP 2 is calculated as follows:

€ 

fitness_ total i( ) = S i( )[ ] + WWPL × SWPL i( )[ ] + WCOSTO × SCOSTO i( )[ ]
Where,

  

€ 

S i( ) = j j ∈ pob_ arct ∧ i f j{ }

€ 

SWPL i( ) = j j ∈ pob_ arct ∧WPLi ≥WPL j{ }

€ 

SCOSTO i( ) = j j ∈ pob_ arct ∧COSTOi ≤ COSTOj{ }
|.|denotes cardinality of a set, and the symbol   

€ 

f  stands for Pareto 
dominance relation. The values Wk represents the weight or relevance of 
objective k. In this case, WWPL y WCOSTO were determined in 0.85 y 0.15, 
respectively. 

The sharing function used in CPSEA, introduced by Goldberg and 
Richardson (1987), derates and individuals’s fitness by an amount related 
to the number of similar individuals in the population (Mahfoud, 1995). 
Specifically, an individual’s new shared function, f’, is equal to its old fitness 
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f divided by its niche count. An individual’s niche count is a sum of sharing 
function (sh) values between itself and every individual in the population 
(including itself). The shared fitness of a population element i is 

€ 

fitness_ total' i( ) =
fitness_ total i( )

sh d i, j( )( )
j=1

n

∑
,

The sharing function sh is a function of the distance d between two 
population elements. It returns a ‘1’ if the elements are identical, a ‘0’ if 
they exceed some threshold of dissimilarity, and intermediate levels of 
dissimilarity. The threshold of dissimilarity is specified by a constant, σshare; 
if the distance σbetween two population elements is greater than or equal 
to σshare, they do not affect each others’s shared fitness. Most commonly-
used sharing functions, which is the one used in this paper, are of the 
form,

€ 

sh d( ) = 1− d
σ share

 

 
 

 

 
 

α

, si d < σ share

0, otherwise.

 
 
 

  

In the above equation, α is a constant (typically set to 1) used to regulate 
the shape of the sharing function.

5.3.1. The weighted planning level WPL. The WPL measures the non-
monetary convenience of a particular corrugator schedule. It is designed 
to determine how close is a particular corrugator schedule to the one that 
optimizes the business as a whole, not only seen with a productive point 
of view, but a costumer-service point of view as well.

The calculation of the WPL index is as follows:

For each order i

if Q_orderedi x 0.95 ≤ Q_schedulledi ≤ Q_orderedi x 1.15

WPL = ordersofnumberIMP

IMP
WPL

i
i

i

__
1++

∑
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If Q_schedulledi < Q_orderedi x 0.95

WPL = WPL + 

€ 

Q_ schedulledi
Q_orderedi

x IMPi
IMPi

i
∑

Else if Q_schedulledi > Q_orderedi x 1.15

WPL = WPL -  

€ 

current _ generation
max_ generation

x Q_ scheduledi
Q_orderedi

−1
 

 
 

 

 
 

 End if
End if
Next i

Where Q_orderedi represents the quantity ordered in order i; Q_
schedulledi, the quantity scheduled of order i; Number_of_orders, the 
numbers of orders to be scheduled and IMPi, the importance of order i.

A fuzzy inference system was designed to determine the IMP values. 
The input values of this inference system are the due date of the order, 
the queue size of the converting machines that will use that particular 
order in its productive process and the price of the order. Membership 
functions for these fuzzy variables are provided in appendix A. Triangular 
shapes were chosen to represent the fuzzy variables presented aboved. 
The defuzzyfication method chosen was the centroid method. The output 
variable of the FIS is the IMP value. The range of the IMP value is 0 to 1, 
where 1 represent the highest importance and 0 the lowest.

5.3.2. The cost function. A corrugator scheduling cost evaluation method 
is implemented, based on (cloud, 1995). The cost function represents the 
total cost per 100 lineal meters. Four cost elements are calculated:

1  Running cost: This cost represents the corrugator running cost. The 
running cost are the cost incurred in the time required to reach maximum 
speed after a paper, size or independent slitter turn and the time required 
to complete the run. A corrugator cost per hour is calculated including 
direct labour cost, indirect labour cost, maintenance cost, power cost and 
fuel cost.
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2   Change cost: This cost represents the waste and hours incurred in change 
preparation and execution, i.e. roll preparation and mounting, slitter 
head setting and turning.

3   Side Trim waste cost: Side trim waste cost is included in the total cost. 
Side trim waste can be minimised, but it is necessary because of different 
reasons related to the operation of the corrugator and the quality of the 
corrugated material produced.

4   Upgrading cost: This cost represents the cost incurred in upgraded orders. 
Upgrading cost is incurred when an order is scheduled in a higher grade 
than the one that the client ordered. Upgrading can be necessary when 
there are no others orders in the same grade that can help schedule an 
order with a high IMP index.

5.4.  Selection

The original tournament selection procedure is used to pick k parents 
randomly and after a few calculations it returns the best of them (Lang 
Fang, 1994).
The value of k is set as the 1/10th of the original population size.

5.5.  Recombination

Two recombination operators are defined: One point crossover and uniform 
crossover, i.e. in each crossover the offspring is 4 sons. The crossover 
operators are described below:

- One point crossover consists on picking a number that is less than the 
chromosome size. The offspring will be formed with the genes inherited 
from the parents located before the position determined by the number 
selected, and the genes located after that position will switch each 
other.

- In uniform crossover, every gene coming from the first parent has a 
probability of 0.5 of switching position with the corresponding gene in 
the second parent (Lang Fang, 1994).
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Figure 5. One point crossover

Figure 6. Uniform crossover

5.6.  Mutation

Two mutation operators are determined:

- Cutting pattern addition mutation, which adds a cutting pattern randomly 
along the chromosome.

- Proportion mutation, which generates a new proportion for an existing 
cutting pattern.

5.7.  Termination

The number of generations is the stop criteria for the algorithm.

6.  EXPERIMENTAL STUDY

The implementation of CPSEA involves the selection of several parameters. 
This selection is determined by a design of a series of experiments as 
follows:

- A 33 experiment which was used to determine the values for maximum 
generations, archive size and initial population size.
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- Using the parameters values found in previous experiments, a 23 
experiment which was used to determine the values for mutation 
probability and mutation value.

- Using the parameters values found in previous experiments, several 
runs were conducted to determine the σshare value. 

These experiments suggest which factors are key in achieving good 
performance and also suggest good values. The values for the parameters 
in CPSEA used are: Maximum generations, 75; archive size, 75; initial 
population size, 1250; mutation probability, 0.5; mutation value, 0.1 and 
σshare, 2.

The results obtained using CPSEA after setting the good parameter 
values were compared with the results provided by the company using 
the current manual production schedule. 8 different order sets were 
selected to represent the different schedules for the corrugator. The order 
sets used consist on a variety of grades, dimensions and units requested, 
paper widths available and queue status in converting machines.

The results are showed in tables 1 and 2.

  Table 1. Cost evaluation Table 2. WPL evaluation

MANUAL CPSEA MANUAL CPSEA

P1 1,58 1,71 P1 $ 14.300 $ 13.080
P2 1,35 1,40 P2 $ 13.895 13.840
P3 1,34 1,64 P3 $ 13.340 12.085
P4 1,23 1,29 P4 $ 10.780 10.910
P5 1.06 1,45 P5 $ 10.530 10.470
P6 1,01 0,90 P6 $15.510 12.620
P7 1,01 0,85 P7 $15.937 13.150
P8 0,83 1,72 P8 13.220 10.930

  
Three different statistical tests were conducted in order to investigate 

the performance of the CPSEA compared to the manual scheduling method. 
The three statistical tests conducted were the paired-comparison t-test, the 
Wilcoxon sign test and the Wilcoxon ranked sign test.

The result of these test confirm the statistical significance of the better 
performance of the CPSEA compared to the manual method evaluated 
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with the cost function. In fact, CPSEA will generate schedules whose total 
cost will be 10% better than the cost yielded with the manual method. This 
translates in savings of about US$170.000 per year in a medium-sized box 
plant.

Even though 6 of the 8 problems compared show better performance 
of the CPSEA evaluated with the WPL function, this improvement is not 
statistically significant on the 0.05 level. P-values were in the range of 0.07 
to 0.11. It is to notice that tests show an average improvement of 16% of the 
CPSEA compared to the manual method measured with the WPL function, 
which encourage the researchers for conducting further experimentation.

7.  CONCLUSIONS

This paper proposed a multi-objective evolutionary algorithm (EA) for 
production scheduling in a corrugator manufacturing plant, with the 
objective of optimizing the weighted planning level (WPL). The proposed 
algorithm also provides some insights about the trim lost and costs 
incurred when upgrading the corrugator. In addition to the improvement 
in the WPL, the algorithm is enough flexible to incorporate the empirical 
knowledge of the production manager when selecting the most appropriate 
schedule for the factory. Reduction in upgrading costs is also obtained 
after the application of the algorithm. These features make our algorithm 
very attractive for actual implementation in the Company.

For future work, we intend to address the multiple-objective optimization 
problem using a more global approach. For instance, optimal solutions 
for the cutting-stock problem at the first stage of processing cardboard 
boxes may induce some problems when sequencing production tasks at 
the finishing stage of the corrugator. A balance between on-time customer 
delivery and optimization of production resources has to be achieved in 
order to maintain the competitiveness in today’s global market.
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Appendix A

Membership functions for “due date”.

Membership functions for “queue size”.

Membership functions for “order price”.

 

Membership functions for the output variable “IMP”.
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