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Abstract

The resonant column test is the standard method in the laboratory to 
obtain the dynamic properties of the soil. The state of dynamic equili-
brium during the test can be represented by a viscoelastic model that is 
expressed by a transcendent equation in complex variables. It implies 
that the solution of the equation to find the shear modulus and damping 
ratio should use fairly sophisticated numerical techniques. This article 
presents and compares an approximate viscoelastic equation that allows 
obtaining an approximate value of the dynamic properties of the soil. 
Finally, a set of resonant-column test was performed in order to verify 
the proper performance of the proposed solution.

Keywords: Resonant-column, Shear-wave velocity, Soil stiffness, 
Visco-elasticity.

Resumen 

El ensayo de columna resonante es el método de referencia en laboratorio 
para obtener las propiedades dinámicas del suelo. El estado de equilibrio 
dinámico durante el ensayo se puede representar mediante un modelo 
viscoelástico que se expresa mediante una ecuación trascendente en variable 
compleja. Lo anterior implica que se deben utilizar técnicas numéricas de 
cierta sofisticación para la resolución de la ecuación y así poder encontrar 
los valores del módulo de corte y de la relación de amortiguamiento. En 
el presente artículo se propone y compara una ecuación viscoelástica 
aproximada que permite obtener un valor cercano de las propiedades 
dinámicas del suelo. Finalmente, se llevó a cabo un conjunto de ensayos 
de columna resonante para verificar la exactitud de la solución propuesta.

Palabras clave: Columna resonante, Rigidez del suelo, Velocidad de 
la onda cortante, Viscoelasticidad.
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1. INTRODUCTION

The resonant-column (RC) test is currently recognized as the reference 
laboratory method to evaluate dynamic properties of soils [1]. During this 
test, a cylindrical specimen of soil is subjected to a steady-state harmonic 
excitation, and the response of the system in terms of vibration is measured. 
The frequency of the input signal is shifted until resonance is achieved. 
Then, it is possible to compute the dynamic properties (i.e. modulus and 
damping ratio) of the soil as derived from the dynamic equilibrium of the 
specimen. Woods [2] traced back to the first application of the RC method 
made by the Japanese engineers Ishimoto and Ida in 1937. About twenty 
years later, Shannnon et ál. [3] revived the technique, which has been con-
tinuously improved over the years, until present.

The exact solution of the dynamic system makes use of the theory of wave 
propagation, since the specimen is idealized as a viscoelastic rod subjected 
to a forced vibration. The governing equation of motion establishes the pro-
portionality between the resonant frequency and the shearwave velocity. 
Santos [4] derived an equation for a Drnevich-type RC apparatus. Following 
a similar procedure, Lai et ál. [5] derived an expression for a Stokoe-type 
RC apparatus. These exact viscoelastic solutions adopt the form of a trans-
cendent and complex-value function, in which the shear modulus and the 
damping ratio should be solved simultaneously by a curve fitting method. 
This process is performed by an iterative procedure that needs an initial 
estimated value. Usually, the procedure only converges if such initial value 
is closely approximate to the actual value. Otherwise, the iterative process 
may not to converge or even reach illogical results.

Variables included in the viscoelastic model, such as the calibration factors 
and the physical and geometrical properties of the specimen could have 
different extents of influence on the computed values of the shear modulus 
and damping ratio. The influence of these factors is analysed in this paper.

The objective of the work is to propose an approximate solution of the RC 
system based on a single-degree-of-freedom (SDOF) representation of the 
system. Although the approximate equation is complex and transcendent as 
well the exact solution, it has fewer variables and usually converges faster. 
The approximate soil parameters obtained by the proposed equation could 
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provide satisfactory results in most cases, or at least approximate results 
could serve as the initial values in the iterative procedure using the exact 
viscoelastic solution.

2. THEORETICAL BACKGROUND

The two most common types of RC devices are known as the Stokoe and 
Drnevich [6]. In the first one, the top end of the specimen is in totally free 
condition, whereas in the second one, the top end of the specimen is par-
tially restrained by a spring and a dashpot. In both cases, the top end of 
the specimen is firmly bonded to an active end mass with rotational mass 
inertia JA.

The top mass includes the driving motor used to apply torque to the cylin-
der. The inertial mass of the top end contributes to produce a nearly linear 
distribution of the rotation through the height [7]. The base of the specimen 
is firmly bonded to the pedestal and no rotation is allowed. The pedestal, 
in turn, is rigidly anchored, or at least, has a rotational mass inertia JP, 100 
times greater than the rotational mass inertia of the soil specimen [1]. The 
soil specimen having an inertial rotational mass J, is forced to vibrate under 
a harmonic torque T(t) with amplitude T0 and arbitrary frequency ω. As a 
result of this external excitation, the specimen rotates an angle of twist ϴ, 
with a magnitude that depends on the time t, and the elevation z.

A schematic representation of the Drnevich-type RC device is presented 
in Figure 1. The top active platen is partially restrained by a spring with 
constant KA and a dashpot with constant damping ratio ξA. This feature 
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produces a better distribution of the rotation angle and the system is able 
to apply up to medium shear strain levels.

Figure 1. Schema of Drnevich-type rc Device. aDapteD from [2].

The exact viscoelastic solution

In the following derivation, it is assumed that the rod is a homogeneous, 
isotropic and elastic solid. Figure 2a shows a cylindrical specimen with mass 
density ρ, mass polar moment of inertia J, shear modulus G and damping 
ratio ξ. The base of the cylinder is firmly attached to a fixed support and 
the top is attached to the active end platen.

The dynamical properties of the active platen JA, KA and ξA are known. Taking 
into account the geometrical shape of the components, it is advantageous 
the use of a cylindrical coordinate system specified by three independent 
components, namely: radius r; angular position ψ and height z. The com-
ponents of the cylindrical coordinate system are illustrated in Figure 2b.
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 b) a)

Figure 2. Schema of a cylinDrical Specimen in a reSonant-column teSt: a) 
cylinDrical Specimen attacheD to a paSSive (fixeD) platen anD an active enD 
platen; b) croSS Sectional area of the Specimen illuStrating the cylinDrical 

coorDinateS SyStem (r,ψ,z) for any point of the volume.

The phenomenon of propagation of shear waves in an isotropic homoge-
neous and elastic medium is represented by the wave equation expressed 
in Equation (1). The Equation describes the movement of a particle located 
at any position of the medium.

       (1)

Where Δ is the Laplacian operator in cylindrical coordinates (r,ψ,z), u the 
displacement of a particle located at position (r,ψ,z), t the time and VS the 
shear-wave velocity. Figure 3 shows the displacement u of a point P1 lo-
cated at coordinates (r,ψ,z).
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Figure 3. DiSplacement u from p1(r,ψ,z ) to p2(r,ψ+θ,z).

The displacement component in direction ψ can be considered as u=r∙θ (z,t). 
The rotation angle θ depends on both z coordinate and time t according to:

      (2)

Where ω is the angular frequency of the wave. For a harmonic wave, the 
solution of the partial differential Equation (1) implies that the function f(z) 
follows the forms of Equation (3):

    (3)

The constants A and B depend on the boundary conditions of the specimen 
as follows:
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I) Angular displacement at the fixed end at any time is equal to zero, u(r,h,t) = 0:

  (4)

II) The top of the specimen (z=0) is attached to a rigid mass with mass 
moment of inertia JA and subject to an externally applied harmonic 
torque. Additionally, for a Drnevich apparatus, there is a link between 
the top mass and the structure, which can be represented by a spring 
with constant KA. The total external moment is thus a result of three 
forces: applied torque, inertial force of the top mass and spring force, 
as expressed by [4]:

    (5)

The value of the rotation at the point z=0 is given by Equation (2):

     (6)

and its second derivative:

      (7)

Introducing Equations (6) and (7) in Equation (5):

    (8)
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Moreover, if self-weight is neglected, only shear stress is non-zero. The 
moment is computed by integration of the shear stress over the area of the 
cross-section, located at depth z=0:

     (9)

Where G=ρVS
2. By integration, the torsional moment yields to: 

     (10)

Therefore, combining Equations (8) and (10), the equilibrium at z=0 is 
represented by:

   (11)

By dividing both sides of the equation by the rotation angle at z=0, taking 
into account that J=0.5ρh}πR4 and after some arrangements, the rotation-
to-torque ratio is given by:

     (12)

Until now, only elastic behaviour was admitted. However, the system is 
more realistic modelled if it is considered as slightly visco-elastic. This 
can be done by introducing the complex parameters VS

* and KA
*, using the 

Elastic/Visco-elastic correspondence principle [8]:

       (13)
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    (14)

Whre wA is the resonant frequency of the apparatus without specimen (tor-
sional resonant frequency of the active mass). On the other hand, torque and 
rotation have the same frequency and are generally out in phase. Thus, ωt 
can be substituted by the phase lag between signals. ϕ(ω). By introducing 
these two modifications, Equation (12) becomes:

Ɵ0

T0

1

1
Jω2 JA

Jωh ωh
VS VS1+i2ξ 1+i2ξ

(1+i2ξA) ωA
2

-1
ω

+

tan

e-iø (ω) =
 (15)

Equation (15) is known as the transfer function of the RC system that relates 
the amplitude of the twist angle ϴ0, the amplitude of the torque T0, and the 
phase lag ϕ, between them for any angular frequency ω of the excitation 
signal.

A particular case of the function is when the system is vibrating at resonant 
frequency ωr, the response of the system tends to infinity for a zero material 
damping and zero apparatus damping, therefore Equation (15) becomes:

     (16)

Equations (15) and (16) are equivalent to those derived by Santos [4] and 
are exact for a slightly visco-elastic material, which is valid for a soil under 
small-strain loading. If the apparatus does not have springs attached to 
the active end (i.e. Stokoe-type apparatus), the value of ωA becomes zero 
and Equation (16) takes the classical form as expressed by Richart et ál. [9]:

     (17)
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In the conventional procedure, the resonant frequency is experimentally 
measured by gradually shifting the excitation frequency ω of a sinusoidal 
torque T, until observe that T and ϴ at the top end are ϕ=π/2 out in phase.

Then, VS is directly computed from Equation (16) because h and J are mea-
surable properties of the specimen, and JA and ωA are apparatus constants 
previously obtained by calibration. Once the VS is determined, Equation 
(15) serves to compute ξ because other variables are known by either direct 
measurement or previous calibration. Moreover, both material properties can 
be obtained simultaneously in Equation (15) since the relationship between 
them, through the complex shear-wave velocity expressed in Equation (13).

Since Equation (16) is transcendental (that is, the unknown variable cannot be 
isolated), it becomes necessary to solve it by an iterative process that needs 
an initial estimated value. Equation (15) on the other hand, is transcendental 
and complex, requiring a precise determination of the experimental data 
and solved by a curve fitting procedure involving complex-value data. The 
procedure only converges if the initial estimated value is closely approxi-
mate to the actual result.

The approximate viscoelastic solution

Soil properties have huge variations depending of many factors, even for 
a particular soil specimen. For this reason, the proper selection of initial 
values to find the dynamic soil parameters in Equation (15) allows the 
successful and fast convergence of the iterative process. The approximate 
solution presented in this section looks to provide the initial estimate values 
based on a single degree of freedom model (SDOF) [10]. A RC system can 
be approximately represented by a SDOF model [11].

    (18)

Where ξT is the total damping of the system. Although it is a complex-value 
equation, it has fewer variables and usually converges faster than the exact 
solution expressed in Equation (15). According to Cascante [12] and Kumar 
and Clayton [13], Rayleigh’s method for torsional vibration provides an 
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approximation for the mass polar-moment of inertia of this system and the 
associated shear stiffness KT:

      (19)

The SDOF system is composed by two serial-connected elements: the soil 
specimen and the active end platen (Figure 4). For simplicity, this figure 
illustrates a system with an axial DOF, but the analysis is also valid for a 
rotational system.

Figure 4. rc SyStem moDelleD aS SDof moDel.

Since both springs are in series and subjected to the same twist angle, the 
total complex stiffness can be approximately expressed as:

   K*T = K*�+ K*A  (20)

Where:

   K*T = K�
T (1+i2ξT)   (21)
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KA
* was defined by Equation (14) and the complex torsional stiffness of the 

soil specimen K*, can be computed from:

     (22)

From the real part of Equation (20), the approximate value of the shear 
modulus is represented by:

   (23)

while the approximate shear-wave velocity can be a function of measurable 
variables ωr, h, J/JA and ωA/ωr:

  
1-

J/JA

ωA

ωr
VS = ωrh

+ ⅓

2

  (24)

From the imaginary component of Equation (20):

     (25)

By using Equation (23) and rearranging variables, Equation (26) enables to 
find an approximate value of the soil damping as function of measurable 
variables ξT, ξA, J/JA and ωA/ωr:

     (26)
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Comparison of viscoelastic equations

To illustrate the shape of exact and approximate visco-elastic equations, 
Figure 5 plots the absolute amplitude and phase angle for a resonant-column 
system for typical property values of a hypothetical soil specimen (G = 100 
MPa, ξ = 5%, d = 0.07 m, h = 0.10 m, ρ = 1500 kg/m3) and calibration factors 
(JA = 0.003087 kg m², ωA= 100 Rad/seg, ξA= 4.54%).
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Figure 5. compariSon of exact anD approximate viSco-elaStic

equationS of a rc SyStem

In the example, while the actual shear modulus is 100 MPa and the actual 
damping ratio is 5%, the estimations with the approximate solution are 99.97 
MPa and 5%, respectively. These approximate results could be satisfactory 
in practice. Nevertheless, if a refinement is required, approximate results 
are optimum initial values of the curve fitting procedure to estimate the 
parameters by using the exact solution. 

Factors influencing the viscoelastic solutions

Shear-wave velocity

At resonance, exact and approximate viscoelastic solutions provide a solution 
for the shear-wave velocity by Equations (16) and (24), respectively. Both 
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equations depend on J/JA, ωA/ωr, ωr and h. In the exact solution, VS cannot 
be isolated and therefore the actual value should be obtained by numerical 
methods. In contrast, in the approximate solution VS is directly obtained.

The normalized resonant frequency, Ωr describes the direct linear rela-
tionship between the resonant frequency and the shear-wave velocity for 
a specific soil specimen:

       (28)

Figure 6 shows Ωr as a function of J/JA and ωA/ωr for the exact solution as 
well as for the approximate. Both solution exhibit a very well agreement 
between them for J/JA<0.5. This ratio is usually lower than 0.1 and con-
sequently the approximate solution is a good substitute for the exact one. 
Regarding the influence of the apparatus resonant frequency, ωA/ωr is an 
adequate parameter to analyze it. From the figure, the higher the value of 
ωA/ωr is, the lower the estimation of VS. For instance, the value of Ωr for J/
JA=0.5 and ωA/ωr=0, differs only 1.7% from the respective value for J/JA=0.5 
and ωA/ωr=0.2, which is a typical maximum ratio in most Drnevich-type 
apparatuses. It means that a deviation in the determination of ωA during 
calibration implies an insignificant error in the calculated value of the 
shear-wave velocity.

Figure 6. Normalized resoNaNt frequeNcy Ωr aS a function of J/Ja anD ωa/ωr. 
SoliD lineS: exact viScoelaStic Solution; DaSheD lineS: approximate viScoelaStic 

Solution.
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Finally, J/JA is an important ratio that must be accurately determined because 
it has strong influence on Ωr. J depends on the total mass and the diameter 
of the specimen. Both properties can be measured with sufficient precision 
with conventional instruments available in laboratory. On the other hand, 
JA is obtained by calibration. A method to measure this calibration factor 
as an alternative to the method described in the standard method [1] was 
proposed in [6]. Both methods allow stable measurements of JA.

Damping ratio

Concerning the damping ratio, Equations (15) and (27) are used to compute 
the damping ratio by the exact and approximate viscoelastic solutions, res-
pectively. The approximate solution provides a direct value of the damping 
ratio that depends on J/JA, ωA/ωr, ξA and ξT. Figure 7 presents the influence 
of each of these ratios. For convenience, ξ and ξA were normalized by ξT and 
the curves are grouped in three sets according to their respective value of 
ωA/ωr. For a Stokoe-type apparatus in which neither ωA nor ξA exist, the 
total damping of the system is only due to the soil and therefore ωA/ωr =0 
and ξ/ξT =1 for any value of J/JA.

Figure 7. normalizeD Soil Damping ratio by the approximate Solution aS a 
function of J/Ja, ωA/ωr anD ξa/ξt.
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The three sets of curves correspond to increasing values of ωA/ωr. As this 
ratio increases, the effect of the apparatus damping ratio has more influence 
on ξ/ξT. This fact confirms the requisite of RC devices with small values of 
ωA and a careful determination of ξA. It is remarkable that ξ≥ξT because in 
this serial model ξT ≠ξ+ξA.

In the case of the exact solution, there is not a direct solution of the damping 
ratio, as can be verified in Equation (15). Thus, it is not possible to make a 
sensibility analysis as performed with Equation (27).

3. EXPERIMENTAL PROCEDURE

Equipment

A Drnevich-type device capable of performing sequentially resonant-column 
(RC) and cyclic torsional shear (CTS) tests was designed and implemented 
in a triaxial stress system. In this device, it is possible to apply vibrations to 
the soil specimen ranging from 0.01 to 20 kHz. Figure 9 shows a schematic 
description of the apparatus with its main components.

The resonant-column subsystem is composed by four drive coils to produce 
the rotational vibration on the specimen. The input signal is generated by a 
function generator (Hameg HM8150, 12.5 MHz) and the current amplified 
by an amplifier (STP-890, 700 W). The vibration is measured by an accele-
rometer (Dytran, 3055B2) and the signal amplified by a signal conditioner 
(Dytran, 4119B). The Cyclic torsional subsystem is composed by a servomotor 
(Yaskawa, Sigma-5 200W, 1.96 Nm). The servomotor applies the torque and 
measures the resulting rotation with a precision of 10-5 rad.

Axial and volumetric deformations, as well as cell, back and pore pressure, 
and axial force are measured by electronic sensors and all the information is 
acquired by a data acquisition card (NI, CompactDAQ 9174). The information 
is automatically processed by a software in LabView [14]. The apparatus 
calibration factors were: JA = 0.003087 kg m², ωA= 114.98 Rad/seg, ξA= 4.54%
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Figure 8. Schematic DeScription of the combineD rc-ctS apparatuS.

Tests

The initial water content of the commercial kaolinite was determined pre-
viously as well as the liquid and plastic limits. The material was disintegrated 
by the use of a hammer, passed through a sieve and lumps disintegrated 
again until total reduction of the material into powder. The powder was 
mixed with water in proportions to obtain a water content equivalent to 
1.5 times the liquid limit of the clay. Then, the mixture was poured into a 
cylindrical mold, which rests on a bed of sand covered by filter paper. The 
set was placed in a water tank and the soil was gradually loaded.
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After the consolidation process, the specimen was extruded and cut. The 
specimen was weighted and its dimensions measured before the installa-
tion in the equipment. Filter papers were used to avoid solid migration 
into the porous stones. The latex membrane was placed by means of the 
membrane expansion tube and the top cap was carefully positioned on to 
the specimen. Once obtained full contact between top cap and specimen, 
the membrane was fixed to the top cap by means of two o-rings. Finally, 
the triaxial chamber was placed, filled with water and pressurized up to 20 
kPa. Vertical load was adjusted accordingly to impose the isotropic stress. 
Table 1 shows the main initial physical properties of the soil specimen.

Table 1. initial phySical propertieS of the Soil Specimen

Description Unit Value

Material Kaolimite

Diameter mm 72

Length mm 105.5

Total Mass g 737.28

Water Content % 31.11

Specific Gravity of Solids - 2.62

Plasticity Index - 17

The specimen was confined and consolidated under 50 kPa of isotropic 
stress. Once the consolidation process was completed, the specimen was 
tested with the Non-Resonance (NR) method [15]. In this type of RC method, 
the system is excited with a continuous sine signal with fixed frequency, 
the vibratory response is measured by mean of the accelerometer, and 
the amplitude of the input signal is adjusted until the response reaches a 
desired level.

This procedure was repeated for different frequencies in a 25 Hz bandwidth 
around resonance. Next, the target vibration level was increased in order 
to impose a higher shear strain (a total of four strain levels between 2.5x10-6 
and 2.5x10-5) and the NR method was re-started. Finally, the specimen was 
consolidated under a higher isotropic stress (100, 200 and 400 kPa), iterating 
the entire process along the shear strains and frequencies. The software is 
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capable of performing this process for each stress state without operator 
intervention.

Plots of the torque (T0) and vibration (u0) amplitudes as a function of fre-
quency for 200 kPa of isotropic effective stress of and 5x10-6 of shear strain 
are presented in Figure 9.

As the frequency approaches to resonance, reduces the torque needed 
(Figure 9a) to impose the desired vibration (Figure 9b). The NR method 
ensures that the strain level is almost constant for every frequency. A to-
tal of sixteen pair of graphs similar to the one presented in Figure 9 were 
obtained by means of this laboratory methodology (four stress states and 
four shear strain levels).

a) b)

Figure 9. input anD output SignalS in the nr teSt: a) torque; b) vibration

All the information was processed by using both the exact visco-elastic 
model (Equation 15) and the SDOF model (Equation 18) by complex curve 
fitting in order to obtain the resonant frequency, the shear-wave velocity 
and the shear damping ratio.

Figure 10 shows the frequency response function obtained by the NR test 
for the kaolinite specimen. In this figure, the representation of this complex 
function was separated in two parts: the amplitude and the phase angle 
function between the torque and the rotation. Exact and approximate 
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visco-elastic solutions are also included in the figure, showing the high 
similarity between them.

a) b)

Figure 10. frequency reSponSe function obtaineD by the nr methoD:
a) amplituDe; b) phaSe

4. RESULTS AND DISCUSION 

Figure 11 presents the shear-wave velocity and the associated damping ratio 
computed by means of the exact viscoelastic model. For each confinement, 
the shear-wave velocity (Figure 11a) is practically constant because the soil 
behavior is essentially elastic in these small-strain levels [16].

In addition, the shear-wave velocity increases as the confinement increases. 
The damping ratio (Figure 11b) oscillates between 1% and 2.3% being the 
lower values associated to high confinements, which agrees with Darendeli 
[17]. There is not a clear trend due to the small-strain range.
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Figure 11. Dynamic propertieS of the kaolinite Specimen: a) Shear-wave 
velocity; b) Shear Damping ratio

The SDOF model provided approximate values of the dynamic properties. 
Figure 12a shows the relative error in the computation of the shear-wave 
velocity by this method. In all the tests, the approximate solution was lower 
than the exact one and the error did not exceed -0.025%. It means that the 
difference between solutions is in average 0.05 m/s, which is irrelevant for 
practical purposes. According to the figure, the higher the confinement, 
the smaller the relative error. This effect could be attributed to the increase 
in the shear-wave velocity according to the confinement, which reduces 
mathematically the relative error.

Regarding the damping ratio, Figure 12b shows the difference between the 
approximate and the exact visco-elastic solutions. The difference was closely 
constant of -0.01% with the exception of tests done under 50 kPa in which 
this difference varies according to the shear strain. As in the shear-wave 
velocity, these differences are too small for practical purposes. 
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Figure 12. compariSon between the exact anD approximate viSco-elaStic 
Solution: a) error in Shear-wave velocity; b) Difference in Shear Damping ratio

The experimental evidence presented allows to suggest that the approximate 
solution is sufficient to compute the dynamic soil properties. However, it 
is possible to add a final step to the fitting process by using the exact vis-
coelastic solution. In this additional iterative process, the initial value could 
be the approximate one found by the approximate solution.

The confinement range of the test program comprises the usual values 
applied in current practice. For this reason, it is reasonable to assume that 
other materials will exhibit similar agreement between solutions. Concer-
ning the strain level, the method is valid for slightly visco-elastic materials, 
and therefore, the agreement between both solutions should decrease 
as the strain increases. However, the NR method used in this work has 
practical limitations in medium and high strains that makes not viable to 
extend this study beyond 5x10-5. There are other types of RC tests that can 
provide information beyond this strain level, but they have the following 
limitations: i) The conventional RC test only provides information on the 
resonant frequency, while the fitting process needs experimental data for 
a range of frequencies around resonance; ii) The RC test using a sine sweep 
as the input signal and processed by frequency domain methods [18] pro-
vides frequency-dependant information (as presented in Figure 10), but 
the transfer function obtained by this method is not strain-constant (as 
presented in Figure 9b).
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5. CONCLUSIONS

The resonant-column test is the standard laboratory method for obtaining 
the dynamic properties of soil. The test is based on the theory of wave pro-
pagation on a soil cylinder. The dynamic equilibrium can be characterized 
by an equation that represents the transfer function of the system composed 
by the apparatus and the soil specimen. This transfer function includes the 
calibration constants of the apparatus (resonant frequency, rotational mass 
inertia and damping ratio) and the complex stiffness of the soil.

An alternative representation of the system was presented by mean of a 
single-degree-of-freedom (SDOF) system. The advantage of this alternative 
relies on the ease of resolution, making possible that its result may be used 
directly or as an initial value in the iterative process of solving the exact 
equation. It was experimentally founded that the relative error in the shear-
wave velocity did not exceed 0.025% and the difference in the damping 
ratio was lower than 0.03%. For this reason, it is recommended to carry 
out a rough calculation using the SDOF model prior to the curve fitting by 
means of the exact solution if the approximate one is considered insufficient.

The calibration of the apparatus is a very important process for guaranteeing 
the reliability of the results, especially in the Drnevich-type apparatus which 
has two additional parameters, compared with Stockoe-type equipment. 
In the first type of apparatus, a calibration error affects mainly the deter-
mination of the damping ratio. The shear-wave velocity is less distorted 
by calibration errors.
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