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Abstract

In this paper, we propose two novel techniques to transform control state-
ments so they can be executed efficiently on the NVIDIA G80 architecture. 
Our techniques called loop splitting and branch splitting smartly increase 
code redundancy, which might be deemed as “de-optimization” for CPU; 
but for a GPU framework these techniques improve the occupancy of a 
program on the GPU device and therefore improve its performance. We 
demonstrate our optimizations on an artificial benchmark and the results 
show that these techniques are very efficient and, depending on the problem 
layout, can lead to an increase in occupancy and a drastic improvement 
in performance compared to non-split version of the same algorithm.

Keywords: Branch splitting, instruction level optimization, loop split-
ting, NVIDIA G80 architecture

Resumen

En este artículo se proponen y evalúan dos nuevas técnicas de optimi-
zación a nivel de instrucciones enfocadas a hacer un mejor uso de los 
recursos de tipo hardware en la arquitectura NVDIA G80. Estas técnicas 
llamadas loop splitting and branch splitting incrementan de forma contro-
lada la redundancia de código, lo cual puede ser considerado como “no 
óptimo” en una arquitectura convencional como la CPU; sin embargo, 
en la arquitectura multiprocesador NVIDIA G80, dicha redundancia se ve 
reflejada en el incremento de la ocupación de sus multiprocesadores y en 
un aumento del paralelismo de los programas ejecutados en este tipo de 
arquitectura. Los resultados obtenidos a partir de los bancos de pruebas 
aleatorios y no aleatorios realizados en esta investigación muestran que 
estas técnicas incrementan la ocupación y el paralelismo de la arquitec-
tura NVIDIA G80 comparado con la ejecución de la versión non-splitting 
del mismo algoritmo.

Palabras clave: Arquitectura NVIDIA G80¸ branch-splitting, loop-spliting, 
Optimización a nivel de instrucciones.

1.	 INTRODUCTION

Scientific computations have always been in need of all the computational 
power they can get. However, high computational power is traditionally 
very expensive and, if available, its full usage requires extensive pro-
gramming efforts. The limited availability of computational power to the 
High-Performance Computing (HPC) community has changed recently. 
Off-the-shelf hardware such as IBM Cell processors in video game consoles 
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(e.g. PlayStation III), and Graphic Processing Units (GPUs) in consumer 
PCs provides equivalent or even higher computational power than what 
is offered by the traditional CPU-centered high performance computing 
solutions (see figure 1). Until recently, it was a challenging task to imple-
ment an algorithm to run on a GPU, especially because of the functionality 
of such a device was plainly geared toward graphics acceleration, and did 
not offer an interface to perform non graphics related operations. Hence, 
scientific applications had to be implemented using functions and APIs such 
as OpenGL that are intended only for graphic tasks. In the past, this fact and 
the lack of downward compatibility of newer generations of graphic hard-
ware greatly restrained the usage of GPUs for scientific computing [1], [2].

Figure 1. Comparison of Floating-Point Operations per Second 
for the CPU and GPU [3]

Nowadays, the introduction of the NVIDIA G80 architecture and the ac-
companying Compute Unified Device Architecture (CUDA) driver and 
C language extension [3] make this computational power of GPUs easier 
to utilize, taking the General-Purpose Computing on Graphic Processor 
Units (GPGPUs) programming to a higher level (see figure 2) [2], [3]. The 
CUDA driver and C language extension simplify the usage of the GPU as 
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a co-processing device. However, even though the problem of writing a 
program that can work on a GPU seems to have been solved, the question of 
how to tune a program to make it work well on a GPU is only rudimentary 
understood and insufficiently investigated. Most notably, the program 
optimization for GPUs faces two major challenges:

•	 The GPU memory hierarchy is organized in a radically different way 
from the organization of the CPU memory hierarchy. Using a GPU, the 
programmer has to manipulate the access patterns to increase the applica-
tions performance. It is the programmer’s responsibility to maximize the 
throughput by optimizing the memory layout, as well as, removing bank 
conflct in shared memory. 

•	 The classical instruction level optimization must be re-evaluated in the 
context of the GPU. Instruction level optimizations for the CPU usually 
assume a program can occupy all CPU resources such as registers. However, 
the main focus of instruction level optimization for a CUDA program is 
to conserve hardware resources in order to allow a higher occupancy of 
the available hardware for all threads.

Within the instruction level optimization, loop and branch statements are of 
special interest since most of the algorithms that qualify to be implemented 
in CUDA are flow control based. Furthermore, control statements in a pro-
gram such as loops and branches pose serious challenges for the efficient 
usage of the GPGPU resources because those control statements will lead 
to the serialization of threads and consequently ruin the parallelism and 
occupancy of the GPU. Even though scientific computation programs typi-
cally have few control statements, those can easily become the performance 
bottleneck of a whole program.

Unlike traditional vector processing units that are inside a general purpose 
processor, a GPU cannot leave the control statements to the CPU, because 
a GPU is generally much farther away from the CPU than the vector units, 
hence fine-grain statement scheduling between a GPU and a CPU is impos-
sible [4]. On the basis of this, we need an effective method to handle the 
control statements “just-in-place” on the GPUs.
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In this paper we present and evaluate two novel instruction level opti-
mizations that help to make better use of the hardware resources of the 
NVIDIA G80 architecture. These techniques called loop splitting and branch 
splitting smartly increase code redundancy, which might be deemed as 
“de-optimization” for CPU; but for a GPU framework these techniques 
improve the occupancy of a program on the GPU device and therefore 
improve its performance. We demonstrate our optimizations on an artificial 
benchmark and our results show that these techniques are very efficient 
and, depending on the problem layout, can lead to an increase in occupancy 
and a drastic improvement in performance compared to non-split version 
of the same algorithm.

Figure 2. CUDA programming paradigm: serial code executes on the host (CPU) 
while parallel code executes on the device (GPU) [3]
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The rest of the paper is organized as followed: In Section 2 we present a 
brief discussion about the related work. In Section 3 we give an overview 
of CUDA. In Section 4 we present the proposed approach to improve the 
occupancy and parallelism for the NVIDIA G80 architecture. In section 5 we 
evaluate the performance of our optimizations on an artificial benchmark. 
The conclusions are given in Section 6.

2.	 RELATED WORK

Since NVIDIA published CUDA in 2006, there has been a great interest in 
many different areas to apply and optimize techniques to use CUDA in an 
efficient way. Over the past few years the understanding and acceptance for 
GPGPU programming grew steadily. As a result, we can see many research 
projects that design new optimization techniques for GPGPUs or study 
the application of CPU-based optimization to the new context of GPGPUs. 
Limited by space, here we discuss only a small set of those projects. 

Optimization for memory hierarchy is probably most extensively studied 
in the context of GPGPUs. For instance, loop tiling is probably one of the 
most important program transformations to improve the cache locality of a 
program; it has been studied under two different contexts: for the CPU and 
the GPGPU. The loop tiling for CPU is extensively studied in [5]-[9]. Studies 
of loop tiling and unrolling also include those that analyze the benefit/overhead 
ratio and predict the best unrolling factors [10]. On the GPU side, Ryoo et 
al. [11] study the basic principles of optimization for GPGPUs including 
loop-level optimization techniques. Moreover, Ryoo et al in [11] present how 
to define the overall optimization space for GPGPUs by using heuristic. 
Their technique is shown to be effectively to find the best optimizations for 
the matrix multiplication on NVIDIA CUDA.

Another important category of GPU-based research projects is the application 
of the high performance GPUs in real world problems. In [12] the authors 
give an introduction to a few representative projects of such applications. 
Finally, Stratton et al in [13] present a unified framework that enable a 
kernel to be developed only once for one GPGPU architecture but can be 
automatically ported to other GPGPUs and multi-core architectures [14], [15].
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3.	 CUDA OVERVIEW

CUDA is an NVIDIA’s programming model that uses GPUs for general 
purpose computing. It allows the programmer to write programs in C with a 
few extensions, which are specific to the CUDA hardware. These extensions 
allow the programmer to directly access the different levels of the memory 
hierarchy, which is quite different from the common and well known CPU 
memory/cache model (see figure 3). In this framework the programmer is 
responsible to take full advantage of several memory layout techniques, 
which will manage all levels of the GPU’s explicit memory hierarchy.

Figure 3. Comparison between a conventional CPU architecture and NVIDIA 
G80 architecture [3]

Occupancy

The NVIDIA G80 GPUs presents a new architecture called SIMT (single-
instruction, multiple-thread) [3], allowing the multiprocessor maps each 
thread to one scalar processor core, and each scalar thread is executed inde-
pendently with its own instruction address and register state (see figure 4). 
This is a cost-effective hardware model where groups of up to eight threads 
will execute the same instruction in a thread processing array for exploiting 
data parallelism. However, it can be ineffective for algorithms that require 
diverging control flow decisions, such as those generated from if and switch 
statements that can significantly impact the instruction throughput if threads 
within the same warp follow different branches [16].
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Figure 4. NVIDIA G80 hardware model: a set of multiprocessor with on-chip 
shared memory [3]

In some algorithms, threads can be reorganized to avoid divergent control 
flow, and logical threads within a block can have independent control flow 
throughout the program. However, for good performance on the GPU 
hardware, each thread should follow the same control flow or execution trace 
throughout the kernel code. The NVIDIA G80 GPU architecture executes 
logical threads in SIMT bundles called warps, but allows for divergence of 
thread execution using a stack-based re-convergence algorithm with masked 
execution [16], [17]. Therefore, logical threads with highly irregular control 
flow execute with greatly reduced efficiency compared to a group of logical 
threads with identical control flow.

In addition, another important challenge of The NVIDIA G80 GPU archi-
tecture is to find the optimal numbers of threads and blocks that will keep 
the GPU fully utilized. However, the percentage of utilization depend of 
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different factor such as the size of the global data set, the maximum amount 
of local data that blocks of threads can share, the number of thread processors 
in the GPU, and the sizes of the on-chip local memories [3]. In order to help 
developers perform this analysis, NVIDIA provides an Occupancy Calcula-
tor, which considers all these factors to suggest the best way to distribute 
the data along the kernels [2], [18]. 

To reach the maximum possible number of the 12,288 threads in 128-proces-
sor NVIDIA G80 architecture, the compiler should not assign more than 
about 10 registers per thread. However, in practice the compiler assigns 20 
to 32 registers per thread, which limits the practical degree of concurrency, 
and decreases the occupancy of the kernel, which is defined as the ratio of 
the number of active warps per multiprocessor to the maximum number 
of active warps.

Table 1. Summary of the technical specification and features 
associated to the NVIDIA G80 GPU architecture:

Resources available Number of Maximum Resources

Number of multiprocessors 16

Maximum number of thread per block 512

Warp size 32

Register per multiprocessor 8192

Shared memory per multiprocessor 16KB

Maximum number of active block per multiprocessor 8

Maximum number of active warp per multiprocessor 24

Maximum number of active thread per 
multiprocessor 768

4.	 PROPOSED LOOP AND BRANCH OPTIMIZATION 
TECHNIQUES

Modifying CUDA kernels in a way to guarantee the highest possible utili-
zation of available computational resources is a major task for the GPGPU 
programmers. Having a Kernel that runs at 100% occupancy allows for 

7 Impact analysis of conditional.indd   138 30/08/2010   02:06:57 p.m.



139Ingeniería & Desarrollo. Universidad del Norte. 27: 130-150, 2010

Impact analysis of conditional and loop statements  
for the NVIDIA G80 architecture

better usage of computational resources and improves the power consump-
tion, is more efficient in hiding memory latencies and therefore gives a 
better performance. Two well known control structures, such as: loops and 
branches, can have a major effect on occupancy and the performance of a 
kernel which hase to be optimized [19]. 

There are many well known loop optimizations that can be applied to CPU 
programs as well as to CUDA Kernels. For example loop unrolling, to re-
duce the overall number of instructions needed and to allow instruction 
reordering, loop interchange and in some cases even loop tiling might help 
to improve access to the manually managed shared memory of the device. 
On the other hand, branches are one of the major factors that bring down 
the performance of a CUDA kernel if they are used without considering 
the negative effects on the SIMT architecture. If only one thread in a warp 
steps through the other branch then all the threads of the warp have to step 
through the instructions of both branches as it is the case for a common 
SIMD architecture [20].

In many cases the programmer can optimize the branching in a way that the 
additional number of instructions is kept low or can organize the input data 
in a way to guarantee that every thread in a warp has to execute the same 
branch. In this section we propose two novel techniques that can help to 
improve the performance of loops that utilize excessive memory operations 
and branches with different complexity.

Loop Splitting

A loop splitting is a pretty simple optimization to reduce the register pres-
sure of a kernel. Therefore this optimization is limited to kernels that do 
not reach 100% occupancy because of register usage. If the kernel contains 
a loop where in the loop body multiple operations are performed and each 
operation relies on inputs that are stored in different registers (e.g. memory 
addresses) and at least some of those operations are independent this opti-
mization can be applied. The loops splitting described here is not the same 
as loop peeling [21] which is also sometimes referred to as loop splitting but 
is a compiler optimization to remove dependencies or simplified loops. 
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The purpose of our loop splitting technique is to give the programmer a tool 
to increase the occupancy of a CUDA kernel and by doing so the overall 
performance [19]. In figure 5, we can split the loop in two loops, by doing so 
we only have to keep the parameter values ptr1 and ptr2 in registers for the 
first loop and ptr3 and ptr4 for the second loop. This can be done because all 
the pointers are parameters passed to the kernel and if we only use those 
parameters in the loop body, we don’t have to load them into registers 
before. Therefore ptr1 and ptr2 are getting loaded into registers when the 
first loop is executed and ptr3 and ptr4 are loaded when the second loop is 
executed. This new transformation frees at least 2 registers which can in 
many cases give an increase in occupancy of up to 33%.

kernel (ptr1 , ptr2 , ptr3 , ptr4 , ptr_result){
	 float x;
	 float y;
	 …
	 for i=0 to N
	   x += ptr1 [i] * ptr2 [i];
	   y += ptr3 [i] / ptr4 [i];
	 end
	 …
	 ptr_result = x%y;
}

kernel (ptr1 , ptr2 , ptr3 , ptr4 , ptr_result){
	 float x;
	 float y;
	 …
	 for i=0 to N
	   x += ptr1 [i] * ptr2 [i];
	 end
	 for i=0 to N
	   y += ptr3 [i] / ptr4 [i];
	 end
	 …
	 ptr_result = x%y;
}

1
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Figure 5. (a) Pseudo code for a kernel that qualifies for loop splitting without any 
major changes. In the loop body multiple independent memory operations are 
performed and the pointer addresses that were passed as parameters to the kernel 
have to be kept in registers throughout all iterations of the loop. (b) Pseudo code 

for the kernel after loops splitting was applied.

Branch Splitting

As loop splitting, the general idea behind branch splitting is to reduce the us-
age of hardware resources such as registers and shared memory of a kernel 
or at least part of the kernel. Branch splitting can be applied for any kernel 
that does not run with 100% occupancy, works on independent data and 
contains branching where the branches differ in complexity and therefore in 
the usage of hardware resources, especially registers or shared memory. 
This means that if one branch makes excessive usage of registers or shared 
memory so that the occupancy drops below 100%, the whole kernel will 
always run with that minimal occupancy even if the branch that leads to 
the lower occupancy is never executed.
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The idea is to split the branches of the initial kernel into two kernels, where one 
kernel executes only the if-branch and the other kernel only executes the else-
branch. The benefit of a two kernel version is that even we have a little overhead 
from the additional kernel invocation we get an increase in performance since 
we could increase the occupancy for at least part of the initial kernel [19].

branchedkenrnel (){
	 load decision mask
	 load input data used by both branches
	 if decision mask [tid] == 0
		  load input data for if branch
		  perform some calculations
		  using fewer registers than else -branch
		  (overrall max 6 registers at the same time)
		  store result
	 else if decision mask [tid] == 1
		  load input data for else branch
		  perform some calculations
		  using more registers than if -branch
		  (overall max. 13 registers at the same time)
		  estore result
	 end if
}

ifkenrnel (){
	 load decision mask
	 if decision mask [tid] == 0
		  load all input data
		  perform some \label{tab : blabla}calculations
		  using fewer registers than else -kernel
		  (overrall max 6 registers at the same time)
		  store result
	 end if
}

elsekenrnel (){
	 load decision mask
	 if decision mask [tid] == 1
		  load all input data
		  perform some calculations
		  using more registers than if -kernel
		  (overall max. 13 registers at the same time)
		  estore result
	 end if
}
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Figure 6. (a) Pseudo code for the kernel used in the single kernel version of the 
benchmark. (b) Pseudo code for the if-branch kernel and the else-branch kernel in 
the split kernel version of the benchmark, where the if-branch kernel can run at 
100% occupancy compared to the else-branch kernel running with 67% occupancy.

The worst case scenario for using the single kernel approach is when at least 
one thread per warp steps through another branch as the rest of the threads, 
because of the SIMT architecture acts in such as way that in this case every 
thread of a warp has to step through the instructions of all branches and the 
device can only be utilized to the minimum occupancy defined by the branch 
with the highest usage of hardware resources. As an example we can see 
the figure 6a, where the arithmetic calculations are chosen so that the if-
branch uses fewer registers than the else-branch. In the split version shown 
in Figure 6b the if-kernel uses an overall number of 6 registers compared 
to 13 for the else-kernel. This results in occupancy of 100% for the if-branch 
and 67% for the else-branch.

Theoretical Analysis of Branch and Loop Splitting

Experiments as the benchmark discussed in the next section have shown 
that this transformation in many cases can drastically improve performance. 
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To get an idea of the theoretical speedup for the worst case the following 
formula can be used: 

	 	 (1)

Where T, is defined as the runtime for the worst case of the branch-version 
when the instructions of all n–th branches are executed. In ideal condi-
tions, neglecting all optimizations that are applied at hardware level, this  

T can roughly be expected to be . Where iρ is defined as the 

occupancy for i–th branch when it runs on its own, minρ  is the occupancy 
when the branched version gets executed, σ is the invocation overhead 
produced every time a kernel is called, and ti is the runtime of the single 
branch before the splitting.

The calculated speedup just gives an idea of what theoretic speedup can 
be expected if the kernel does not get limited by other factors (e.g. the 
memory bank conflicts). There are some more factors that might reduce the 
speedup or prevent this transformation of being applied. As said before, 
the kernel in its original setup might already have saturated the memory 
bandwidth where maybe the increased occupancy might help to hide part 
of the memory latency but as an overall the performance increase for this 
case might be marginal. The runtime of the single branches also plays a 
major role, if the kernel that might run with 100% occupancy has a runtime 
that is much lower than the kernel running with 67%, then the additional 
occupancy might not outperform the overhead added. As a guideline we 
can consider the following conditions for a kernel to be considered for a 
branch splitting [19]:

•	 A kernel that does not run at 100% occupancy 

•	 A kernel that contains two or more major branches 

•	 A kernel where the branches utilizing a different amount of hardware 
resources and the branches can be easily separated
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5.	 ARTIFICIAL BENCHMARK

Benchmark Design 

The benchmark performs arithmetic calculation for every single element in 
a fixed data set. By creating a decision mask that defines for every single 
data element which branch is taken, we have full control over the distribu-
tion of the if-else-branch kernel executions throughout a run. Every run of 
the benchmark executes the single-kernel version of Figure 6a and then 
the split two-kernel version of Figure 6b on a fixed data set of 4 million 
elements. We are measuring the overall runtime starting from the kernel 
invocation till the kernel is done for the single kernel version and compare 
it to the overall runtime starting from the if-branch kernel invocation till the 
else-branch kernel is completed. This way the measurements also include 
the host side (CPU) overhead for the additional kernel invocation in order 
to give a better picture of the overall change in performance.

To show how the distribution and density of which branch is taken effect, 
we run the benchmark with 2 different layouts of the decision mask: a lin-
ear decision mask in Figure 7, which will be explained in the sub-section 
5.2, and a random decision mask Figure 9, which will be explained in the 
sub-section 5.3. Finally, the benchmark runs on an Intel dual core 2.8 GHz 
with 2GB of ram and two GeForce 8800 GTX GPUs where only one was 
used for this benchmark.

Layout 1: two section decision mask

The first run is performed with a decision mask that gets filled up 
from one side. Therefore we have only two sections in the mask: 
a growing else-branch section and a decreasing if-branch section 
(see figure 7). For the first iteration not one single thread will execute the 
else-branch kernel. For the last iteration, every thread executes the else-branch 
kernel.

The change in performance throughout the iterations is pretty much a con-
nection between the two extreme cases for 0% and 100% else-branch execu-
tions in the first and last iteration of the benchmark (see figure 8). This can 
be explained by looking at what the threads in each single warp are doing. 
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There is only one warp throughout the whole problem where threads have 
to take different branches, which is the warp that contains the threads that are 
working on the boundary between the two sections of the decision mask. 
All the other warps only execute the if-branch or the else-branch kernel.

The performance differences between the extreme cases for the first and 
last iteration can be explained by looking at what is being executed and 
the level of occupancy at this moment. For the first iteration, that is 0% 
else-branch executions, every thread in the branch-version executes only the 
if-branch with 67% occupancy because the device has no way to know if all 
or how many threads in all blocks running in a multiprocessor only take the 
if-branch. For that reason the device has to consider that there are threads in 
all blocks that might take the else-branch and therefore the maximum pos-
sible occupancy is the one for the worst case. The split version drops out 
of the else-branch kernel immediately when there is only if-branch kernel 
executions needed and in this case also only executes the if-branch kernel for 
every single thread but each multiprocessor is running at 100% occupancy. 

For the last iteration, both benchmark versions: branched and split, execute 
only the else-branch part with 67% occupancy. 

Around this point we have the only problem layout where the overhead 
of the additional kernel invocation and the additional loads needed by 
the two kernels lead to a lower performance of the split version than the 
branched version, but since this is only the case for roughly 5% of this very 
special problem layout, the split version mostly outperforms the branch 
version of the benchmark.

Figure 7. Linear decision mask, starting at the first iteration from no else-branch 
executions for any data element to only else-branch executions for the last iteration
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Figure 8. Change in runtime over the percentage of else-branches executed for the 
split two kernel versions and the branch, single kernel version of the benchmark 
with a decision mask.

It should be mentioned that in a case where the programmer knows that the 
problem will branch with such conditions there are better ways to improve 
the performance. E.g. by using two kernels with reduced input sets, so that 
not for every single data element has to be checked if one or the other branch 
has to be executed and only one kernel works on each section. The next sec-
tion will discuss a more realistic decision mask with a random distribution.

Layout 2: random decision mask 

In most common problems where branching is used, the condition that de-
fines which branch is taken has a more randomized distribution compared 
to what is discussed in the previous section. To get an idea how branch split-
ting affects a problem like that, we generated a random decision mask for 
every possible condition in the branches (see figure 9). The mask is randomly 
initialized with more values that lead to an execution of the else-branch 
instead of the if-branch, starting from 0% else-branch executions to 100% 
else-branch executions. As can be seen, the results for the extreme cases in 
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figure 10 of 0% else-branch executions and 100% else-branch executions are 
the same as in the previous experiment, but as soon as we step away from 
those extreme cases we see a drastic drop in performance. 

The reason for that is the earlier explained SIMT architecture of CUDA. 
where as soon as one thread in a warp has to step through the other branch 
all threads in the warp will execute all the instructions for both branches. In 
the previous benchmark run, only one warp in the entire system had to 
do that, the warp that handles the data segment where the decision mask 
switched form if to else. On the other hand, with this benchmark setup we 
have an entire different picture. For a data set of 2

22 
(4 million) elements we 

have 2
22

/32 = 131072 warps, only 1% of the data (41944 elements) has to be 
handled by the else-branch and in the worst case every element is placed in 
a different warp, that is 32% of the warps have to step through the instruc-
tions of both branches. This happens at both ends of the 0% to 100% run 
of the benchmark which explains the drastic drop in performance for the 
first iterations.

For the branched version of the benchmark the performance decreases further 
the farther we step away from the starting point till we reach the worst case 
scenarios between 8% and 16%. In these areas we have the highest probabil-
ity that every warp at least contains one thread that executes the else-branch, 
forcing every single thread to step through the instructions of both branches. 
The split version on the other hand has a similar overall behavior except 
that the initial drop in performance is way not as drastic as for the branched 
version and throughout the run of the benchmark the performance of the 
split version does not change as much as for the branch version.

The important part here is that the execution time for the split version, espe-
cially for the worst case scenarios, is 14% faster than for the branch version 
(see figure 8 and figure 10). The explanation for the better performance of 
the split version again is the SIMT architecture of CUDA in combination 
with the different needs of resources of the branches. As explained earlier 
in this section, the if-branch uses fewer registers as the else-branch. In the 
branched version the kernel can only utilize part of the device since the kernel 
simultaneously uses up to 13 registers. Therefore a block size of 256 threads 
per block limits the occupancy of the multiprocessors to 67%. In the split 
version the else-branch kernel still uses 13 registers and runs at 67% occu-
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pancy but the if-branch kernel uses just 6 registers which allows this kernel 
to fully utilize all the devices computational power by running at 100% 
occupancy. These facts already explain the increase in performance of the 
previous benchmark layout, but for the random decision mask this factor 
becomes way more important in combination with the SIMT architecture.

Figure 9. Symbolic figure of the random decision mask, starting at the first iteration 
with no or 0% else-branch executions for any data element to only or 100% else-branch 
executions for the last iteration. The mask is filled with a random number generator.

Figure 10. Benchmark results for a random decision mask showing the runtime 
in milliseconds over the probability of the else-branch taken. The worst case sce-
nario for the initial branched version is located in the area between 8% and 16% 
else branch executions. In this area it is pretty much guaranteed that at least one 
thread per warp executes the else-branch. The overall performance of the branched 
version increases slightly the more else branches get executed because of the 
reduced number of if-branch executions at the lower occupancy. Still it can be 
seen that throughout 98% of the benchmark the split version outperforms the 
branch version by 6% to 13.5%.
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In the previous non randomized benchmark explained in the sub-section 
5.2, all warps except one executed only the if-branch or the else-branch kernel. 
Now we have a completely different setup. For this benchmark every warp 
that contains two threads that take different branches will have to execute 
the instructions of both branches. As said before, in the worst case section 
between 8% and 16% of probability of the else-branch executions is the high-
est, because every warp contains at least one or more threads executing in the 
else-branch. Here we can say that for all 2

22 
threads where each works on one 

of the 2
22 

elements, the branched as well as the split-version, all instructions 
of both branches or both kernels have to be executed. The big difference is 
that the branched version is limited to utilize 67% of the devices resources 
for both branches, whereas the split version executes the if-branch kernel at 
100% and the else-branch kernel at 67%. If we use the equation 1 explained 
in the sub-section 4.3, we can say that the branches in the original branched 
version run roughly at the same speed, only if we neglect the overhead 
and assuming that . 

	 	 (2)

This represents an average speed-up compared to the worst case scenario 
which is in the area where 8% to 16% of the threads have to use the branch 
with the lower occupancy. Till now it is only possible to give an estimate of 
the speed-up for a problem where the branches are executed in a random 
fashion distributed equally over the threads. Furthermore the final result 
may be influenced by the other hardware limitations such as bank conflict 
in shared memory. Those limitations and how they influence the overall 
performance still has to be considered for every single problem.

6.	 CONCLUSION

To run kernels with the highest possible occupancy is one of the major tasks 
for any GPGPU programmer. Any transformation or optimization that can 
reduce the usage of hardware resources that reduce the occupancy are a big 
contribution to the overall performance of a GPGPU program execution. Our 
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loop and branch transformation helps to increase the occupancy and paral-
lelism for some special cases of loops and a more general case of branches.

The loop splitting is an example for a transformation that might seem coun-
terproductive on most other architectures than a GPU, but here where oc-
cupancy is a major player in the performance game, it can have a positive 
impact on the overall performance for the NVIDIA G80 Architecture.

In any case branches are not a good thing to use in any SIMD or SIMT ar-
chitecture, but for some algorithms there are not that many other efficient 
ways to implement them without using branching. Therefore optimizing 
branches in a way that either the number of instructions per branch gets 
minimized or the input data set reduces the probability of warps where both 
branches have to be executed is also a major task for GPGPU programmers; 
especially when we know that in many cases there is no way to prevent 
both branches from being executed within a warp, and most of this branches 
differ in complexity and therefore in the usage of hardware resources. In 
those cases, branch splitting is a promising transformation that can drasti-
cally improve the performance of a GPGPU application.
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