Estimación de la rigidez de materiales granulares marginales no ligados mediante ensayo CBR dinámico
DOI:
https://doi.org/10.14482/inde.40.01.621.992Palabras clave:
ensayo CBR dinámico, módulo resiliente equivalente, material granular marginal, material granular no ligado, módulo resiliente, rigidez, pavimentosResumen
La evaluación en laboratorio de la respuesta de materiales granulares no ligados (e.g., subbases- y bases-granulares para pavimentación) bajo carga dinámica es limitada en Colombia. Este estado de la práctica se relaciona, entre otros aspectos, con que el equipo triaxial dinámico requerido para su determinación es costoso y los protocolos de ensayo complejos. Como alternativa, en la última década se han realizado desarrollos sobre el ensayo CBR dinámico (dCBR), que emplea el equipo, pero modifica el protocolo del ensayo de CBR convencional. Esta investigación propone las bases de un nuevo protocolo para el ensayo de dCBR, para determinar la rigidez de materiales granulares (i.e., módulo resiliente equivalente) mediante la aplicación de siete etapas de carga repetida, donde cada etapa está definida por una deformación objetivo. El estudio incluyó dos materiales granulares marginales (MGMs), con índices de plasticidad altos (IP>6). Los resultados sugieren que el protocolo propuesto para el ensayo de dCBR permite la estimación del módulo resiliente equivalente. Adicionalmente, este protocolo discrimina el efecto de la plasticidad de la fracción fina del MGM sobre su rigidez (i.e., reducción de módulo resiliente equivalente al incrementar el índice de plasticidad). Con base en los resultados obtenidos, se propone avanzar en la caracterización de un mayor número de materiales para validar los resultados preliminares presentados e indagar sobre una posible correlación entre valores de módulo resiliente y módulo resiliente equivalente.
Citas
C. A. Murillo, “Desafíos Para El Desarrollo De La Red Vial Terciaria En El Posconflicto,” Rev. Ing., no. 45, pp. 32–38, 2017, doi: 10.16924/revinge.45.5.
INSTITUTO NACIONAL DE VÍAS (INVIAS), “Estado de la red vial criterio técnico segundo semestre 2021,” Bogotá D.C., 2021 [Online]. Available: https://www.invias.gov.co/index.php/informacion-institucional/2-principal/57-estado-de-la-red-vial
L. A. Teixeira Brito, “Design methods for low volume roads,” The University of Nottingham, 2011.
B. Andrews, Guide to pavement technology part 6: Unsealed pavements, 1st ed. Sydney: Austroads Ltd., 2009.
H. B. Seed, C. K. Chan, and C. E. Lee, “Resilience characteristics of subgrade soils and their relation to fatigue failures in asphalt pavements,” in International Conference on the Structural Design of Asphalt Pavements, 1962.
A. Araya, A. Molenaar, and L. Houben, “A realistic method of characterizing granular materials for low-cost road pavements,” Proc., 11th Int. Conf. Asph. Pavements (ISAP 2010), 2010.
A. A. Araya, “Characterization of Unbound Granular Materials for Pavements,” Delft University of Technology, 2011.
A. Araya, A. Molenaar, and L. Houben, “Characterization of unbound granular materials using repeated load CBR and triaxial testing,” in Paving Materials and Pavement Analysis, 2010, vol. 1, no. I, pp. 355–363, doi: 10.1061/41104(377)44 [Online]. Available: http://ascelibrary.org/doi/10.1061/41104%28377%2944
A. A. Araya, “Simplified characterization techniques for (sub) tropical base materials and modelling,” Int. J. Comput. Methods Exp. Meas., vol. 2, no. 1, pp. 92–106, 2014, doi: 10.2495/CMEM-V2-N1-92-106.
W. Sas, A. Gluchowski, K. Gabry?, and A. Szyma?ski, “Application of cyclic CBR test for the estimation of resilient modulus in the pavement construction,” in ICE Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, 2015, no. ISBN 978-0-7277-6067-8, pp. 793–798, doi: 10.1680/ecsmge.60678 [Online]. Available: https://www.icevirtuallibrary.com/doi/abs/10.1680/ecsmge.60678
W. Sas, A. Gluchowski, and A. Szymanski, “The geotechnical properties of recycled concrete aggregate with addition of rubber chips during cyclic loading,” Int. J. GEOMATE, vol. 12, no. 29, pp. 25–32, 2017, doi: 10.21660/2017.29.5216.
S. Hao and T. Pabst, “Determination of resilient behavior of crushed waste rock using cyclic load CBR test,” in GeoVirtual 2020, 2020, pp. 1–6.
S. Hao and T. Pabst, “Estimation of resilient behavior of crushed waste rocks using repeated load CBR tests,” Transp. Geotech., vol. 28, no. November 2020, pp. 1–13, 2021, doi: 10.1016/j.trgeo.2021.100525. [Online]. Available: https://doi.org/10.1016/j.trgeo.2021.100525
A. Salmi, L. Bousshine, and K. Lahlou, “A new model of equivalent modulus derived from repeated load CBR test,” Int. J. Eng. Trans. A Basics, vol. 33, no. 7, pp. 1321–1330, 2020, doi: 10.5829/ije.2020.33.07a.19.
W. Sas, A. Gluchowski, and A. Szymanski, “Behavior of recycled concrete aggregate improved with lime addition during cyclic loading,” Int. J. GEOMATE, vol. 10, no. 1, pp. 1662–1669, 2016, doi: 10.21660/2016.19.4250.
H. Haghighi, A. Arulrajah, A. Mohammadinia, and S. Horpibulsuk, “A new approach for determining resilient moduli of marginal pavement base materials using the staged repeated load CBR test method,” Road Mater. Pavement Des., vol. 19, no. 8, pp. 1848–1867, 2018, doi: 10.1080/14680629.2017.1352532. [Online]. Available: https://doi.org/14680629.2017.1352532
A. N. Abid, A. O. Salih, and E. A. Nawaf, “The Influence of Fines Content on the Mechanical Properties of Aggregate Subbase Course Material for Highway Construction using Repeated Load CBR Test,” Al-Nahrain J. Eng. Sci., vol. 20, no. 3, pp. 615–624, 2017.
A. A. A. Molenaar, “Characterization of some tropical soils for road pavements,” Transp. Res. Rec., vol. 2, no. 1989, pp. 186–193, 2007, doi: 10.3141/1989-63.
S. S. Nagula, J. M. Krishnan, and R. G. Robinson, “Use of repeated load CBR test to characterize pavement granular materials,” in Functional Pavement Design - Proceedings of the 4th Chinese-European Workshop on Functional Pavement Design, CEW 2016, 2016, 1st ed., no. June, pp. 1011–1018, doi: 10.1201/9781315643274 [Online]. Available: https://www.taylorfrancis.com/books/9781317285526
S. S. Nagula, R. G. Robinson, and J. M. Krishnan, “Mechanical characterization of pavement granular materials using hardening soil model,” Int. J. Geomech., vol. 18, no. 12, pp. 1–13, 2018, doi: 10.1061/(asce)gm.1943-5622.0001291.
A. Salmi, L. Bousshine, and K. Lahlou, “Two unbound granular materials stiffness analysis with staged repeated load CBR test,” MATEC Web Conf., vol. 286, pp. 1–3, Aug. 2019, doi: 10.1051/matecconf/201928606003. [Online]. Available: https://www.matec-conferences.org/10.1051/matecconf/201928606003
A. Mehrpazhouh, S. N. Moghadas Tafreshi, and M. Mirzababaei, “Impact of repeated loading on mechanical response of a reinforced sand,” J. Rock Mech. Geotech. Eng., vol. 11, no. 4, pp. 804–814, 2019, doi: 10.1016/j.jrmge.2018.12.013. [Online]. Available: https://doi.org/10.1016/j.jrmge.2018.12.013
Instituto Nacional de Vías, Especificaciones generales de construcción de carreteras y normas de ensayo para carreteras. Bogotá D.C.: Ministerio de Transporte, 2013.
G. Cerni and S. Camilli, “Comparative analysis of gyratory and proctor compaction processes of unbound granular materials,” Road Mater. Pavement Des., vol. 12, no. 2, pp. 397–421, 2011, doi: 10.1080/14680629.2011.9695251.
A. E. Alvarez, L. V Espinosa, P. A. Ortiz, M. D. Hurtado, L. E. Cotes, and Y. M. López, “Evaluación de la degradación por compactación de materiales granulares tipo subbase,” Rev. EIA, vol. 16, no. 31, pp. 13–25, 2019, doi: 10.24050/reia.v16i31.746.
J. F. Camacho Tauta, O. J. Reyes Ortiz, and D. F. Méndez González, “Ensayo de compactación giratoria en suelos como alternativa al ensayo de compactación proctor,” Cienc. e Ing. Neogranadina, vol. 17, no. 2, pp. 67–81, 2007.
M. J. Browne, “Feasibility of using a gyratory compactor to determine compaction characteristics of soil,” Montana State University, 2006.
N. Pérez García, P. Garnica Anguas, D. Fredlund, M. Reyes Rodríguez, H. García Cruz, and R. Pérez Luis, “Compaction and mechanical properties of soils compacted in the gyratory compactor,” Infraestruct. Vial, vol. 18, no. 31, pp. 20–29, 2016.
M. Pasetto and N. Baldo, “Comparative analysis of compaction procedures of unbound traditional and non-conventional materials,” in Pavements Unbound, 2004, no. 1, pp. 65–73.
R. L. Arabali, Poura; Ick Lee, Sang; Sebesta, Stephen; Sakhaeifar, Maryam S.; Lytton, “Application of Superpave Gyratory Compactor for Laboratory Compaction of Unbound Granular Materials,” in International Conference on Transportation and Development 2018, 2018, pp. 359–369 [Online]. Available: http://www.asce-ictd.org/
M. Y. Fattah, M. M. Hilal, and H. B. Flyeh, “Effect of fine material on compaction characteristics of subbase material using the Superpave Gyratory Compactor,” Int. J. Civ. Eng. Technol., vol. 7, no. 5, pp. 466–476, 2016.
S. Thyagarajan, L. Tashman, E. Masad, and F. Bayomy, “The heterogeneity and mechanical response of hot mix asphalt laboratory specimens,” Int. J. Pavement Eng., vol. 11, no. 2, pp. 107–121, 2010, doi: 10.1080/10298430902730521.
K. P. George, “Prediction of Resilient Modulus From Soil Index Properties. Report No. FHWA/MS-DOT-RD-04-172,” Mississippi, 2004.
R. Sánchez González, “Confiabilidad en el diseño estructural de pavimentos,” Universidad de los Andes, 2003.
B. Caicedo, O. Coronado, J. M. Fleureau, and A. Gomez-Correia, “Resilient Behaviour of non Standard Unbound Granular Materials,” Road Mater. Pavement Des., vol. 10, no. No. 2, pp. 287–312, 2009, doi: 10.1080/14680629.2009.9690196.
Y. Xiao, E. Tutumluer, Y. Qian, and J. A. Siekmeier, “Gradation Effects Influencing Mechanical Properties of Aggregate Base–Granular Subbase Materials in Minnesota,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2267, no. 1, pp. 14–26, 2012, doi: 10.3141/2267-02. [Online]. Available: http://journals.sagepub.com/doi/10.3141/2267-02
G. Cerni, A. Corradini, E. Pasquini, and F. Cardone, “Resilient behaviour of unbound granular materials through repeated load triaxial test: influence of the conditioning stress,” Road Mater. Pavement Des., vol. 16, no. 1, pp. 70–88, 2015, doi: 10.1080/14680629.2014.964294.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Científica Ingeniería y Desarrollo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.