Caracterización de los residuos de la industria maderera para su aprovechamiento en diferentes aplicaciones
DOI:
https://doi.org/10.14482/inde.38.1.691.1Palabras clave:
Industria maderera, Residuos de madera, Procesamiento y utilización de residuos de maderaResumen
La madera se considera un material versátil y valioso, puesto que no solo se utiliza como fuente de energía o como material estructural —dadas sus propiedades mecánicas y su aspecto visual—sino también para la elaboración de productos de consumo no alimenticios, tales como productos farmacéuticos, pinturas, adhesivos, productos textiles, compuestos poliméricos, cosméticos, papeles y diversos productos básicos. Motivada por la diversidad de especies madereras y la creciente disponibilidad de residuos madereros, la actual investigación busca caracterizar los residuos de tres especies maderables que predominan en la industria colombiana: Tectona grandis, Pinus patula y Acacia mangium, con el fin de promover su transformación en productos industriales de mayor valor que el producto de desecho. Muestras representativas se sometieron a caracterización física, química y térmica mediante análisis de densidad, pH, análisis último, análisis próximo, contenido lignocelulósico, extractivos y poder calorífico. Los resultados obtenidos permitieron valorar los residuos madereros como un recurso de mayor valor para generar productos reciclados como, por ejemplo, tableros de partículas, fibras o alistonados, u otros materiales como biopulpas para papel, materiales compuestos, bioadsorbentes y carbón activado, e igualmente destinada a la producción de combustibles tipo biochar, syngas y bioaceite.
Citas
Ministerio de Agricultura y Desarrollo Rural, Cadena productiva forestal —tableros aglomerados y contrachapados— muebles y productos de madera. Bogotá, 2007. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/5513/1/2008313114521_Forestal.pdf
X. Acevedo Gaitán, & H. Martínez Covaleda, Características y estructura del sector forestal-madera-muebles en Colombia. Bogotá: Ministerio de Agricultura y Desarrollo Rural. 2003. Disponible en: http://repiica.iica.int/DOCS/B0038E/B0038E.PDF
W. G. Hubbard, «Wood bioenergy», en Bioenergy. Biomass to biofuels, A. Dahiya, ed. Elsevier Inc., 2015, pp. 55-71. Doi:10.1016/b978-0-12-407909-0.00004-3
T. A. Erhabor, «Evaluation of wood wastes from sawmilling operations in Benin City, Edo State», Journal of Forestry Research and Management, vol. 12, pp. 113-124, 2015.
Scottish Government, Woodwaste arisings in Scotland: assessment of available data on Scottish. Glasgow: Remade Scotland (Recyclate Market Development programme), Glasgow Caledonian University, 2004.
B. Olufemi, J. Olalekan, & S. Oluyinka, «Lumber recovery efficiency among selected sawmills in Akure, Nigeria», Drvna Industrija, vol. 63, n.o 1, pp. 15-18, 2012. Doi: 10.5552/drind.2012.1111
A. Barua, A. Tarek, A. Chowdhury, S. H. Mehidi, & H. M. Muhiuddin, «Residue reduction and reuse in wooden furniture manufacturing industry», International Journal of Scientific and Engineering Research, vol. 5, n.o 10, 2014.
B. Falk, & D. McKeever, «Generation and recovery of solid wood waste in the U. S», BioCycle, vol. 53, n.o 8, pp. 30-32, 2012. Disponible en: https://www.biocycle.net/2012/08/15/generation-and-recovery-of-solid-wood-waste-in-the-u-s/
B. Der?an, T. Luki?, M. Bubalo-Živkovi?, B. Durev, R. Stojsavljevi?, & M. Panteli?, «Possibility of efficient utilization of wood waste as a renewable energy resource in Serbia», Renew. Sustain. Energy Rev., vol. 16, n.o 3, pp. 1516-1527, 2012. Doi: 10.1016/j.rser.2011.10.017
J. Mayowa, H. Olawale, & I. Olalekan, «Sustainable wood waste management in Nigeria», Environ. Socio-economic Stud., vol. 4, n.o 3, pp. 1-9, 2016. Doi: 10.1515/environ-2016-0012
K. Oluoti, G. Megwai, A. Pettersson, & T. Richards, «Nigerian wood waste: a dependable and renewable fuel option for power production», World Journal of Engineering and Technology, vol. 2, pp. 234-248, 2014. Doi: 10.4236/wjet.2014.23025
U. P. Onochie, E. K. Orhorhoro, & P. E. Oyiboruona, «Economic potential and benefits of sawdust in Nigeria», Int. J. Res. Publ., vol. 9, n.o 1, 2018. Doi: 1009172018296
M. B. Sarmiento Oviedo, «Alternativas de compostaje de aserrín de pino caribe (Pinus caribaea) en la industria maderera Refocosta S. A., municipio de Villanueva, Casanare, Colombia», Rev. Investig. Agrar. y Ambient., vol. 2, n.o 2, pp. 21-32, 2011.
P. McKendry, «Energy production from biomass (part 1): overview of biomass», Bioresour. Technol., vol. 83, pp. 37-46, 2002. Doi: 10.1016/S0960-8524(01)00118-3
R. C. Saxena, D. K. Adhikari, & H. B. Goyal, «Biomass-based energy fuel through biochemical routes: a review», Renew. Sustain. Energy Rev., vol. 13, n.o 1, pp. 167-178, 2009. doi: 10.1016/j.rser.2007.07.011[16] L. Zhang, C. (Charles) Xu, & P. Champagne, «Overview of recent advances in thermo-chemical conversion of biomass», Energy Convers. Manag., vol. 51, n.o 5, pp. 969-982, 2010. Doi: 10.1016/j.enconman.2009.11.038
R. C. Brown, Thermochemical processing of biomass: conversion into fuels, chemicals and power. Chichester, RU: John Wiley & Sons, 2011.
P. Basu, Biomass gasification, pyrolysis and torrefaction: practical design and theory, 2aed. Elsevier Inc, 2013.
E. Kantarelis, W. Yang, & W. Blasiak, «Biomass pyrolysis for energy and fuel production», en Technologies for converting biomass to useful energy-combustion, gasification, pyrolysis, torrefaction and fermentation, E. Dahlquist, ed. CRC Press, 2013, pp. 245-271.
P. Parthasarathy, & K. S. Narayanan, «Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield-a review», Renew. Energy, vol. 66, pp. 570-579, 2014. Doi: 10.1016/j.renene.2013.12.025
R. L. Bain, & K. Broer, «Gasification», en Thermochemical processing of biomass: conversion into fuels, chemicals and power, R. C. Brown, ed. John Wiley & Sons, 2011, pp. 47-77. Doi: 10.1002/9781119990840.ch3
S. Pang, «Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals», Biotechnol. Adv., vol. 37, n.o 4, pp. 589-597, 2019. Doi: 10.1016/j.biotechadv.2018.11.004
S. Van Loo, & J. Koppejan. The handbook of biomass combustion and co-firing. Earthscan, 2012.
K. Rehman Hakeem, M. Jawaid, & U. Rashid, Biomass and bioenergy applications. Springer International Publishing, 2014.
P. Bajpai, Environmentally friendly production of pulp and paper. Hoboken, NJ, EE. UU: John Wiley & Sons, 2010.
P. Bajpai, Biotechnology for pulp and paper processing. Londres: Springer Science & Business Media B. V., 2012.
M. Akhtar, G. M. Scott, R. E. Swaney, & T. K. Kirk, Overview of biomechanical and biochemical pulping research, en Enzyme Applications in Fiber Processing. American Chemical Society, 1998, pp. 15-26. Doi: 10.1021/bk-1998-0687.ch002
T. K. Das, & C. Houtman, «Evaluating chemical-, mechanical-, and bio-pulping processes and their sustainability characterization using life-cycle assessment», Environ. Prog., vol. 23, n.o 4, pp. 347-357, 2004. Doi: 10.1002/ep.10054
L. E. Arias Maya, & L. Vanegas Useche, «Materiales compuestos inteligentes», Sci. Tech., vol. 2, n.o 25, pp. 143-148, 2004.
J. Kuk Kim, & K. Pal, Recent advances in the processing of wood–plastic composites. Berlín: Springer International Publishing, 2010.
P. F. Sommerhuber, J. Welling, & A. Krause, «Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in wood-plastic composites», Waste Manag., vol. 46, pp. 76-85, 2015. Doi: 10.1016/j.wasman.2015.09.011
D. D. Stokke, Q. Wu, & G. Han, Introduction to wood and natural fiber composites. John Wiley & Sons, Ltd, 2014.
S. Karade, & L. K. Aggarwal, «Cement-bonded lignocellulosic composites for building applications», Met. Mater. Process., vol. 17, n.o 2, pp. 129-140, 2005.
A. Saunders, & E. Davidson, «Cement Boards 101», Global Cement Magazine, enero, pp. 32-39, 2014.
J. S. Tumuluru, C. T. Wright, J. R. Hess, & K. L. Kenney, «A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application», Biofuels, Bioprod. Biorefining, vol. 5, n.o 3, pp. 683-707, 2011. Doi:10.1002/bbb.324
W.-H. Chen, J. Peng, & X. T. Bi, «A state-of-the-art review of biomass torrefaction, densification and applications», Renew. Sustain. Energy Rev., vol. 44, pp. 847-866, 2015. Doi: 10.1016/j.rser.2014.12.039
S. Döring, «Biomass types for pellet production», en Power from pellets. Technology and applications. Berlín: Springer Science & Business Media B.V., 2013, pp. 13-30. Doi: 10.1007/978-3-642-19962-2_2
N. A. Fredes Núñez, Evaluación técnica y económica de una planta de producción de combustible sólido a partir de biomasa forestal en la región de Los Lagos. Universidad de Chile, 2014.
T. Miranda, I. Montero, F. J. Sepúlveda, J. I. Arranz, C. V. Rojas, & S. Nogales, «A review of pellets from different sources», Materials, vol. 8, no. 4, pp. 1413-1427, 2015. Doi: 10.3390/ma8041413
D. P. Garcia, J. C. Caraschi, G. Ventorim, & F. H. A. Vieira, «Trends and challenges of Brazilian pellets industry originated from agroforestry», Cerne, vol. 22, no. 3, pp. 233-240, 2016. Doi: 10.1590/01047760201622032115
Wood Pellets, «3 uses for wood pellets (aside from heating)», Wood Pellets.com, 2015. Disponible en: https://www.woodpellets.com/blog/2015/07/03/3-uses-for-wood-pellets-aside-from-heating/
J. A. Menéndez-Díaz, & I. Martín-Gullón, «Types of carbon adsorbents and their production», en Activated carbon surfaces in environmental remediation, vol. 7. Elsevier B.V., 2006, pp. 1-48. Doi: 10.1016/S1573-4285(06)80010-4
J. F. Herrera Builes, W. A. Morales Yepes, & J. D. Pérez Schile, «Selección de un método para producir carbón activado utilizando cuatro especies forestales», Rev. Fac. Nac. Agron., vol. 57, no. 2, 2004. Doi: 10.15446/rfnam
J. Clark, & F. Deswarte, Introduction to chemicals from biomass, 2aed. Reino Unido: Wiley, 2015.
R. Rowell, Handbook of wood chemistry and wood composites. EE. UU.: Taylor & Francis Group, 2005.
A. Aires, R. Carvalho, & M. J. Saavedra, «Valorization of solid wastes from chestnut industry processing: extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry», Waste Manag., vol. 48, pp. 457-464, 2016. Doi: 10.1016/j.wasman.2015.11.019
Y. Yazaki, & P. J. Collins, «Wood adhesives based on tannin extracts from barks of some pine and spruce species», Holz als Roh-und Werkst., vol. 52, pp. 307-310, 1994. Doi: 10.1007/BF02621420
J. C. F. Walker, Primary wood processing. Principles and practice, 2a ed. Países Bajos: Springer, 2006
M. Naceur Belgacem, & A. Gandini, Monomers, polymers and composites. Ámsterdam: Elsevier Ltd, 2008.
P. M. Kunnambath, & S. Thirumalaisamy, «Characterization and utilization of tannin extract for the selective adsorption of Ni (II) ions from water», Journal of Chemistry, vol. 2015, p. 9, 2015. Doi: 10.1155/2015/498359
M. Yurtsever, & I. A. Sengil, «Biosorption of Pb (II) ions by modified quebracho tannin resin», J. Hazard. Mater., vol. 163, n.o 1, pp. 58-64, 2009. Doi: 10.1016/j.jhazmat.2008.06.077
Exeter Analytical, «CE440 elemental analyzer», 2015.
R. García, C. Pizarro, A. G. Lavín, & J. L. Bueno, «Characterization of Spanish biomass wastes for energy use», Bioresour. Technol., vol. 103, n.o 5, pp. 249-258, 2012. Doi: 10.1016/j.biortech.2011.10.004
D05 Committee, «ASTM D5373-16: standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke», ASTM International, 2016. Doi:10.1520/D5373-16
D05 Committee, «ASTM D7582-15: Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis», ASTM International, 2015. Doi: 10.1520/D7582-15
E48 Committee, «ASTM E1758-01(2015): standard test method for determination of carbohydrates in biomass by high performance liquid chromatography», ASTM International, 2015. Doi: 10.1520/E1758-01R15
Technical Association of Pulp and Paper Industry (TAPPI), «T-204 cm-97: solvent extractives of wood and pulp», TAPPI test methods, p. 12, 2007. Disponible en: https://www.tappi.org/content/sarg/t204.pdf
Technical Association of Pulp and Paper Industry (TAPPI), «T207cm-99. Water solubility of wood and pulp», 1999.
A. Demirbas, «Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues», Prog. Energy Combust. Sci., vol. 31, n.o 2, pp. 171-192, 2005. Doi:10.1016/j.pecs.2005.02.002
P. McKendry, «Energy production from biomass (part 3): Gasification technologies», Bioresour. Technol., vol. 83, n.o 1, pp. 55-63, 2002. Doi: 10.1016/S0960-8524(01)00120-1
C. Telmo, J. Lousada, & N. Moreira, «Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood», Bioresour. Technol., vol. 101, pp. 3808-3815, 2010. Doi:10.1016/j.biortech.2010.01.021
S. V. Vassilev, C. G. Vassileva, & V. S. Vassilev, «Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview», Fuel, vol. 158, pp. 330-350, 2015. Doi: 10.1016/j.fuel.2015.05.050
M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, & N. Ashwath, «Biofuels production through biomass pyrolysis-a technological review», Energies, vol. 5, n.o 12, pp. 4952-5001, 2012. Doi: 10.3390/en5124952
I. Obernberger, T. Brunner, & G. Bänthaler, «Chemical properties of solid biofuels-significance and impact», Biomass and Bioenergy, vol. 30, pp. 973-982, 2006. Doi: 10.1016/j.biombioe.2006.06.011
K. L. Kenney, W. A. Smith, G. L. Gresham, & T. L. Westover, «Understanding biomass feedstock variability», Biofuels, vol. 4, no. 1, pp. 111-127, 2013. Doi: 10.4155/bfs.12.83
A. Garcia-Maraver, D. Salvachúa, M. J. Martínez, L. F. Diaz, & M. Zamorano, «Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees», Waste Manag., vol. 33, pp. 2245-2249, 2013. Doi: 10.1016/j.wasman.2013.07.010
S. Wang, X. Guo, K. Wang, & Z. Luo, «Influence of the interaction of components on the pyrolysis behavior of biomass», J. Anal. Appl. Pyrolysis, vol. 91, n.o 1, pp. 183-189, 2011. Doi: 10.1016/j.jaap.2011.02.006
H. P. S. A. Khalil, M. S. Alwani, & A. K. M. Omar, «Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers», BioResources, vol. 1, n.o 2, pp. 220-232, 2006.
C. Foelkel, «Papermaking properties of Eucalyptus trees, woods, and pulp fibers», en Eucalyptus online book & newsletter, 2009, pp. 1-110. Disponible en: http://www.eucalyptus.com.br/eucaliptos/ENG14.pdf
Chen, C. et al., «Cellulose (dissolving pulp) manufacturing processes and properties: a mini-review», BioResources, vol. 11, n.o 2, pp. 5553-5564, 2016.
M. A. Azeez, J. E. Andrew, & B. B. Sithole, «A preliminary investigation of nigerian gmelina arborea and bambusa vulgaris for pulp and paper production», Maderas. Cienc. y Tecnol., vol. 18, no. 1, pp. 65-78, 2016. Doi:10.4067/S0718-221X2016005000007
S. Cao, X. Ma, L. Lin, F. Huang, L. Huang, & L. Chen, «Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production», BioResources, vol. 9, no. 3, pp. 4528-4539, 2014. Doi: 10.15376/biores.9.3.4528-4539
M. P. Ansell, Wood composites. Cambridge: Elsevier, 2015.
G. Vaickelionis, & R. Vaickelioniene, «Cement hydration in the presence of wood extractives and pozzolan mineral additives», Ceramics-Silikaty, vol. 50, no. 2, pp. 115-122, 2006.
C. Amengual, & A. Triguero, Implantación central de biomasa forestal y aprovechamiento de las masas forestales. Barcelona: Escuela Politécnica Superior de Edificación de Barcelona, 2013.
L. Lima Rojas, Evaluación de la composición química y propiedades físicas de la madera y parte externa de cuatro coníferas para la producción de bioenergía. Universidad Autónoma de Nuevo León, 2012.
F. Correa-Méndez, «Distribución granulométrica en subproductos de aserrío para su posible uso en pellets y briquetas», Rev. Mex. Ciencias For., vol. 5, n.o 25, pp. 52-63, 2014.
J. Pastor-Villegas, J. F. Pastor-Valle, J. M. Rodríguez Meneses, & M. García García, «Study of commercial wood charcoals for the preparation of carbon adsorbents», J. Anal. Appl. Pyrolysis, vol. 76, n.o 1-2, pp. 103-108, 2006. Doi:10.1016/j.jaap.2005.08.002
G. Zibetti, R. Benítez, & E. Calandri, «Elaboración de carbón activado: contenidos celulares vs. carbón fijado en tres especies de interés forestal de la provincia de Formosa», en II Jornadas de Investigación en Ingeniería del NEA y Países Limítrofes, 2000.
L. Khezami, A. Chetouani, B. Taouk, & R. Capart, «Production and characterisation of activated carbon from wood components in powder: cellulose, lignin, xylan», Powder Technol., vol. 157, n.o 1-3, pp. 48-56, 2005. Doi:10.1016/j.powtec.2005.05.009
M. R. Kim, E. L. Buonomo, A. L. Cukierman, P. R. Bonelli, & D. Industrias, «Obtención de biocombustibles y carbón activado a partir de un precursor renovable», Avances en Energías Renovables y Medio Ambiente, vol. 11, pp. 127, 2007.
H. Sixta, Handbook of pulp, vol. 1. Weinheim: Wiley-VCH, 2006.
Instituto Interamericano de Cooperación para la Agricultura IICA, «Ficha técnica Acacia Mangium», pp. 1-3, 2005.
R. Moya Roque, F. Muñoz Acosta, C. Salas Garita, A. Berocal Jiménez, L. Leandro-Zúñiga, & E. Esquivel-Segura, «Tecnología de madera de plantaciones forestales: fichas técnicas», Revista Forestal Mesoamericana Kurú, vol. 7, n.o 18-19, pp. 18-19, 2012.
Instituto de Recursos Naturales Renovables-Inrenare, Centro Agronómico Tropical de Investigación y Enseñanza-Catie, Asociación Nacional para la Conservación de la Naturaleza-Ancon, & Asociación Nacional de Reforestadores de Panamá-Anarap, Memorias: Seminario Técnico-Acacia Mangium, Comportamiento y Potencial en Panamá, 1994.
O. S. Meneses Tirira, Identificación de usos probables de Pinus Patula Schlect. et Cham. con base en la determinación de las propiedades físico-mecánicas y de trabajabilidad de la madera en Iltaqui-Cotacachi-Imbabura. Universidad Técnica del Norte, 2011.
Centro Nacional de Investigaciones de Café-Cenicafé. Guías silviculturales para el manejo de especies forestales con miras a la producción de madera en la zona andina colombiana: Pino Patula. Manizales: Serie Cartillas Divulgativas, 2011.
R. Crespo-Gutiérrez, E. Jiménez-Romero, G. Law-Blanco, & C. Sánchez-Fonseca, «Análisis comparativo de las propiedades físico-mecánicas de la madera de teca (Tectona grandis L.F.) de Quevedo y Balzar», Cienc. y Tecnol., vol. 1, pp. 55-63, 2008. Doi: 10.18779/cyt.v1i2.23
C. A. Rivas, Idea de proyecto establecimiento de plantaciones forestales comerciales en los departamentos de Chinandega y Matagalpa, Nicaragua. Nicaragua: Instituto Interamericano de Cooperación para la Agricultura-IICA, 2004.
Ministerio de Ambiente Vivienda y Desarrollo Territorial Colombia, Acceso a la cadena productiva de la madera: Teca. Universidad del Tolima.
W. Valenzuela, & T. Cruz, «Aptitud de la madera de cinco especies forestales para fabricar tableros de fibro-cemento», Rev. For. del Perú, vol. 11, n.o 10, pp. 1-17, 2004.
L. Cooperband, The art and science of composting a resource for farmers and compost producers. University of Wisconsin-Madison, Center for Integrated Agricultural Systems, 2002. Disponible en: https://www.cias.wisc.edu/wp-content/uploads/2008/07/artofcompost.pdf
T. Sanchéz-Córdova, A. Aldrete, V. M. Cetina-Alcalá, & J. López-Upton, «Caracterización de medios de crecimiento compuestos por corteza de pino y aserrín», Madera Bosques, vol. 14, n.o 2, pp. 41-49, 2008.