Alternativa para estimación de ocupación de interiores basada en procesamiento de imágenes sobre sistema embebido
DOI:
https://doi.org/10.14482/inde.40.01.620.427Palabras clave:
ocupación interior, sustracción de fondo, Suavizado gaussiano, Apertura morfológica, Umbralización, Búsqueda de contornos, Protocolo SMTP, Sistema embebido, Código abiertoResumen
La estimación de ocupación en espacios interiores es un proceso que contribuye a mantener estándares de calidad en las zonas, y que, al día de hoy, sirve como referencia para identificar posibles focos de contagio de enfermedades respiratorias infecciosas. Este artículo presenta una herramienta para la estimación de ocupación en espacios interiores con notificación mediante el Protocolo Simple de Transferencia de Correo SMTP usando una placa embebida Raspberry Pi. El sistema se presenta como alternativa a los sistemas convencionales de estimación de ocupación midiendo los niveles de CO2 en la zona. El método se basa en procesamiento de imágenes aplicando la técnica de sustracción de fondo mediante lenguaje de programación Python. Inicialmente, se caracteriza la zona donde se prueba el sistema, y se aplican etapas de preprocesamiento, filtrados y umbralización, además de notificación vía correo electrónico por SMTP. El sistema desarrollado se compara con un sistema de medición de CO2 aplicando una matriz de priorización comparando factores como el tiempo de detección, tasa de aciertos y costos de implementación. El método propuesto presentó mejor rendimiento en la totalidad de los parámetros de comparación, con una priorización de 87.972 %. Basar el sistema en herramientas de software de código abierto y herramientas de hardware de alto nivel y bajo costo permite replicar e implementar el sistema a gran escala en ambientes controlados.
Citas
A. Franco and F. Leccese, “Measurement of CO2 concentration for occupancy estimation in educational buildings with energy efficiency purposes,” J. Build. Eng., vol. 32, no. August, p. 101714, 2020, doi: 10.1016/j.jobe.2020.101714.
M. Hashemi, “Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation,” J. Big Data, vol. 6, no. 1, pp. 1–13, 2019, doi: 10.1186/s40537-019-0263-7.
E. N. Kajabad and S. V. Ivanov, “People Detection and Finding Attractive Areas by the use of Movement Detection Analysis and Deep Learning Approach,” Procedia Comput. Sci., vol. 156, pp. 327–337, Jan. 2019, doi: 10.1016/J.PROCS.2019.08.209.
A. Miko?ajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” in 2019 International Interdisciplinary PhD Workshop, IIPhDW 2019, 2019, pp. 117–122.
A. J. Larrazabal, N. Nieto, V. Peterson, D. H. Milone, and E. Ferrante, “Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 23, pp. 12592–12594, 2020, doi: 10.1073/pnas.1919012117.
G. A. Ospina Torres, W. Serna Serna, and G. Daza Santacoloma, “Comparación sistemática de metodologías basadas en información mutua para el registro multimodal de imágenes médicas,” Sci. Tech., vol. 21, no. 4, p. 342, 2016, doi: 10.22517/23447214.12851.
C. H. Setjo, B. Achmad, and Faridah, “Thermal image human detection using Haar-cascade classifier,” Oct. 2017, doi: 10.1109/INAES.2017.8068554.
V. M. Astudillo Delgado and D. A. Revelo Luna, “Apoyo al diagnóstico de neumonía y detección de opacidades pulmonares usando segmentación e instancias semánticas en imágenes de rayos X de tórax,” Rev. Científica Ing. y Desarro., vol. 39, no. 02, pp. 259–274, Jul. 2022, doi: 10.14482/inde.39.2.621.367.
J. L. Ramírez-Arias, A. Rubiano-Fonseca, and R. Jiménez-Moreno, “Object Recognition Through Artificial Intelligence Techniques,” Rev. Fac. Ing., vol. 29, no. 54, p. e10734, 2020, doi: 10.19053/01211129.v29.n54.2020.10734.
F. Fang, K. Qian, B. Zhou, and X. Ma, “Real-time RGB-D based people detection and tracking system for mobile robots,” in 2017 IEEE International Conference on Mechatronics and Automation, ICMA 2017, 2017, pp. 1937–1941, doi: 10.1109/ICMA.2017.8016114.
P. Bazyd?o, K. Lasota, and A. Kozakiewicz, “Botnet Fingerprinting: Anomaly Detection in SMTP Conversations,” IEEE Secur. Priv., vol. 15, no. 6, pp. 25–32, 2017, doi: 10.1109/MSP.2017.4251116.
I. Mutis, A. Ambekar, and V. Joshi, “Real-time space occupancy sensing and human motion analysis using deep learning for indoor air quality control,” Autom. Constr., vol. 116, no. April, p. 103237, 2020, doi: 10.1016/j.autcon.2020.103237.
H. Han, K. Jang, C. Han, and J. Lee, “Occupancy Estimation Based on Co2 Concentration Using Dynamic Neural Network Model,” Aivc.Org, pp. 443–450, 2013.
Y. Yuan, X. Li, Z. Liu, and X. Guan, “Occupancy Estimation in Buildings Based on Infrared Array Sensors Detection,” IEEE Sens. J., vol. 20, no. 2, pp. 1043–1053, Jan. 2020, doi: 10.1109/JSEN.2019.2943157.
A. Szczurek, M. Maciejewska, and T. Pietrucha, “Occupancy determination based on time series of CO2 concentration, temperature and relative humidity,” Energy Build., vol. 147, pp. 142–154, 2017, doi: 10.1016/j.enbuild.2017.04.080.
Y. Zhou et al., “A novel model based on multi-grained cascade forests with wavelet denoising for indoor occupancy estimation,” Build. Environ., vol. 167, no. October 2019, pp. 2–11, 2020, doi: 10.1016/j.buildenv.2019.106461.
S. Zemouri, D. Magoni, A. Zemouri, Y. Gkoufas, K. Katrinis, and J. Murphy, “An Edge Computing Approach to Explore Indoor Environmental Sensor Data for Occupancy Measurement in Office Spaces,” in 2018 IEEE International Smart Cities Conference, ISC2 2018, 2019, pp. 1–9, doi: 10.1109/ISC2.2018.8656753.
D. Giri, S. Shreya, P. Kumari, and R. Yadav, “Indoor human occupancy detection using Machine Learning classification algorithms & their comparison,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1110, no. 1, p. 012020, 2021, doi: 10.1088/1757-899x/1110/1/012020.
E. Longo, A. E. C. Redondi, and M. Cesana, “Accurate occupancy estimation with WiFi and bluetooth/BLE packet capture,” Comput. Networks, vol. 163, no. November, pp. 1–10, 2019, doi: 10.1016/j.comnet.2019.106876.
G. De Cataldo et al., “An upgraded luminosity leveling procedure for the alice experiment,” IEEE Trans. Nucl. Sci., vol. 66, no. 5, pp. 763–770, 2019, doi: 10.1109/TNS.2019.2907227.
C. S. Marzan and N. Marcos, “Towards tobacco leaf detection using Haar cascade classifier and image processing techniques,” ACM Int. Conf. Proceeding Ser., pp. 63–68, 2018, doi: 10.1145/3282286.3282292.
J. Zuo, Z. Jia, J. Yang, and N. Kasabov, “Moving Target Detection Based on Improved Gaussian Mixture Background Subtraction in Video Images,” IEEE Access, vol. 7, pp. 152612–152623, 2019, doi: 10.1109/ACCESS.2019.2946230.
P. Singhal, A. Verma, and A. Garg, “A study in finding effectiveness of Gaussian blur filter over bilateral filter in natural scenes for graph based image segmentation,” 4th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2017, pp. 4–9, Aug. 2017, doi: 10.1109/ICACCS.2017.8014612.
S. Shoba and R. Rajavel, “Image Processing Techniques for Segments Grouping in Monaural Speech Separation,” Circuits, Syst. Signal Process., vol. 37, no. 8, pp. 3651–3670, 2018, doi: 10.1007/s00034-017-0728-x.
C. Shan, B. Huang, and M. Li, “Binary Morphological Filtering of Dominant Scattering Area Residues for SAR Target Recognition,” Comput. Intell. Neurosci., vol. 2018, 2018, doi: 10.1155/2018/9680465.
J. Rudas and G. Sánchez Torres, “Detección de patologías derivadas de las afecciones diabéticas: una revisión del análisis digital de imágenes de retina,” Rev. Científica Ing. y Desarro., pp. 317–338, Dec. 04, 2013.
M. Jin, S. Liu, S. Schiavon, and C. Spanos, “Automated mobile sensing: Towards high-granularity agile indoor environmental quality monitoring,” Build. Environ., vol. 127, no. 1, pp. 268–276, 2018, doi: 10.1016/j.buildenv.2017.11.003.
L. Fleming, D. Gibson, S. Song, C. Li, and S. Reid, “Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings,” Surf. Coatings Technol., vol. 336, no. 0, pp. 9–16, 2018, doi: 10.1016/j.surfcoat.2017.09.033.
C. Jiang, M. K. Masood, Y. C. Soh, and H. Li, “Indoor occupancy estimation from carbon dioxide concentration,” Energy Build., vol. 131, pp. 132–141, 2016, doi: 10.1016/j.enbuild.2016.09.002.
G. Ansanay-Alex, “Estimating occupancy using indoor carbon dioxide concentrations only in an office building: a method and qualitative assessment,” in REHVA World Congress on Energy efficient, smart and healthy buildings (CLIMA), 2013, no. April, pp. 1–8.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Científica Ingeniería y Desarrollo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.