Digital Transformation: Evolving Applications of Artificial Intelligence in the Coffee Industry

Authors

DOI:

https://doi.org/10.14482/inde.43.01.445.864

Keywords:

Artificial Intelligence, Bibliometric Indicators, Bibliographic mapping, Coffee, Sensory Quality

Abstract

The evolution of Artificial Intelligence (AI) in coffee is crucial for transforming this agro-industry. Colombia annually produces 12.6 million sacks and develops research on AI applied to the sector; from the detection of defects in grains to the optimization of roasting to improve coffee quality. However, there is a lack of publications that address research lines and indicators comprehensively. In this context, this research work was based on a multivariate statistical analysis of hierarchical clustering used in the bibliometric analysis methodology. This allowed inferring the current research trend in AI applied to the coffee industry. Additionally, using bibliometric techniques for information retrieval, 208 documents from the Scopus database were refined and analyzed with descriptive statistics. The results showed that Colombian researchers significantly impact the production of knowledge in AI applied to coffee, compared to Brazil, the largest coffee producer. Furthermore, research lines in market analysis through Machine Learning (ML), technologies to detect diseases and improve productivity, algorithmic methods to solve challenges in this agro-industry, and the use of remote sensing and AI for environmental and agricultural management in production were identified.

References

J. Jacobi et al., “Making specialty coffee and coffee-cherry value chains work for family farmers’ livelihoods: A participatory action research approach,” World Dev Perspect, vol. 33, p. 100551, Mar. 2024, doi: 10.1016/j.wdp.2023.100551.

International Coffee Organization, “Statistical Database. International Coffee Organization,” https://www.ico.org/pt/Market-Report-22-23-p.aspx.

Y. Liu et al., “Evaporative self-assembling bioconcentrators onto superhydrophobic micropyramidal arrays as rapid and intelligent blood cancer filtering platforms,” Sens Actuators B Chem, vol. 393, p. 134330, Oct. 2023, doi: 10.1016/j.snb.2023.134330.

F. Eron, M. Noman, R. R. de Oliveira, and A. Chalfun-Junior, “Computer Vision-Aided Intelligent Monitoring of Coffee: Towards Sustainable Coffee Production,” Sci Hortic, vol. 327, p. 112847, Mar. 2024, doi: 10.1016/j.scienta.2024.112847.

G. González-Alcaide, A. Calafat, and E. Becoña, “Núcleos y ámbitos de investigación sobre adicciones en España a través del análisis de los enlaces bibliográficos en la Web of Science (2000-2013),” Adicciones, vol. 26, no. 2, p. 168, Jun. 2014, doi: 10.20882/adicciones.20.

N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” J Bus Res, vol. 133, pp. 285–296, Sep. 2021, doi: 10.1016/j.jbusres.2021.04.070.

N. Ye, T.-B. Kueh, L. Hou, Y. Liu, and H. Yu, “A bibliometric analysis of corporate social responsibility in sustainable development,” J Clean Prod, vol. 272, p. 122679, Nov. 2020, doi: 10.1016/j.jclepro.2020.122679.

S. Kaffash, A. T. Nguyen, and J. Zhu, “Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis,” Int J Prod Econ, vol. 231, p. 107868, Jan. 2021, doi: 10.1016/j.ijpe.2020.107868.

H. Small, “Co?citation in the scientific literature: A new measure of the relationship between two documents,” Journal of the American Society for Information Science, vol. 24, no. 4, pp. 265–269, Jul. 1973, doi: 10.1002/asi.4630240406.

S. MIGUEL, F. MOYA-ANEGÓN, and V. HERRERO-SOLANA, “El análisis de co-citas como método de investigación en Bibliotecología y Ciencia de la Información,” Investigación Bibliotecológica: archivonomía, bibliotecología e información, vol. 21, no. 43, Jul. 2007, doi: 10.22201/iibi.0187358xp.2007.43.4129.

H. D. White and B. C. Griffith, “Author cocitation: A literature measure of intellectual structure,” Journal of the American Society for Information Science, vol. 32, no. 3, pp. 163–171, May 1981, doi: 10.1002/asi.4630320302.

H. D. White and K. W. McCain, “Visualizing a discipline: An author co-citation analysis of information science, 1972–1995,” Journal of the American Society for Information Science, vol. 49, no. 4, pp. 327–355, 1998, doi: 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-4.

M. M. Kessler, “Bibliographic coupling between scientific papers,” American Documentation, vol. 14, no. 1, pp. 10–25, Jan. 1963, doi: 10.1002/asi.5090140103.

D. Zhao and A. Strotmann, “Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic?coupling analysis,” Journal of the American Society for Information Science and Technology, vol. 59, no. 13, pp. 2070–2086, Nov. 2008, doi: 10.1002/asi.20910.

L. C. Cabrera, C. E. Caldarelli, and M. R. G. da Camara, “Mapping collaboration in international coffee certification research,” Scientometrics, vol. 124, no. 3, pp. 2597–2618, Sep. 2020, doi: 10.1007/s11192-020-03549-8.

Y. M. Guimarães, J. H. P. P. Eustachio, W. Leal Filho, L. F. Martinez, M. R. do Valle, and A. C. F. Caldana, “Drivers and barriers in sustainable supply chains: The case of the Brazilian coffee industry,” Sustain Prod Consum, vol. 34, pp. 42–54, Nov. 2022, doi: 10.1016/j.spc.2022.08.031.

H. Madrid-Casaca, G. Salazar-Sepúlveda, N. Contreras-Barraza, M. Gil-Marín, and A. Vega-Muñoz, “Global Trends in Coffee Agronomy Research,” Agronomy, vol. 11, no. 8, p. 1471, Jul. 2021, doi: 10.3390/agronomy11081471.

A. R. Orejuela, C. Fernando, O. Andrade, and J. Peláez Muñoz, “Two decades of research in Electronic Word of Mouth: a bibliometric analysis,” Pensamiento & gestión, vol. 48, pp. 265–282, 2020.

S. Kumar, N. Pandey, W. M. Lim, A. N. Chatterjee, and N. Pandey, “What do we know about transfer pricing? Insights from bibliometric analysis,” J Bus Res, vol. 134, pp. 275–287, Sep. 2021, doi: 10.1016/j.jbusres.2021.05.041.

N. J. Van Eck and L. Waltman, “VOSviewer Manual,” https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.18.pdf.

P. P. Bonissone and K. P. Valavanis, “COMPARATIVE STUDY OF DIFFERENT APPROACHES TO QUALITATIVE PHYSICS THEORIES,” 1985.

E. Lasso, T. T. Thamada, C. A. A. Meira, and J. C. Corrales, “Communications in Computer and Information Science 544 Editorial Board,” Manchester, 2015. [Online]. Available: http://www.springer.com/series/7899

P. Angelov, J. Antonio, I. Juan, and C. Corrales, “Advances in Intelligent Systems and Computing 687 Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change,” 2017. [Online]. Available: http://www.springer.com/series/11156

J. P. Rodríguez, D. C. Corrales, and J. C. Corrales, “A Process for Increasing the Samples of Coffee Rust Through Machine Learning Methods,” International Journal of Agricultural and Environmental Information Systems, vol. 9, no. 2, pp. 32–52, Apr. 2018, doi: 10.4018/IJAEIS.2018040103.

E. Lasso, S. Valencia, and J. C. Corrales, Computational Science and Its Applications – ICCSA 2017, vol. 10405. in Lecture Notes in Computer Science, vol. 10405. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-62395-5.

T. C. Pham, V. D. Nguyen, C. H. Le, M. Packianather, and V.-D. Hoang, “Artificial intelligence-based solutions for coffee leaf disease classification,” IOP Conf Ser Earth Environ Sci, vol. 1278, no. 1, p. 012004, Dec. 2023, doi: 10.1088/1755-1315/1278/1/012004.

V. D. Nguyen, T. C. Pham, C. H. Le, T. T. Huynh, T. H. Le, and M. Packianather, “An Innovative and Smart Agriculture Platform for Improving the Coffee Value Chain and Supply Chain,” 2023, pp. 185–197. doi: 10.1007/978-981-19-6450-3_19.

L. Bo, K. Lai, X. Ren, and D. Fox, “A Scalable Tree-Based Approach for Joint Object and Pose Recognition,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 25, no. 1, pp. 1474–1480, Aug. 2011, doi: 10.1609/aaai.v25i1.7986.

E. T. Caixeta et al., “Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms,” Sci Agric, vol. 78, no. 4, 2021, doi: 10.1590/1678-992x-2020-0021.

E. T. Caixeta et al., “Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee,” Pesqui Agropecu Bras, vol. 52, no. 3, pp. 186–193, Mar. 2017, doi: 10.1590/s0100-204x2017000300009.

D. Casado-Mansilla, J. López-de-Armentia, P. Garaizar, D. López-de-Ipiña, V. Catania, and D. Ventura, “ARIIMA: A Real IoT Implementation of a Machine-Learning Architecture for Reducing Energy Consumption,” 2014, pp. 444–451. doi: 10.1007/978-3-319-13102-3_72.

C.-C. Chen et al., “Improving Defect Inspection Quality of Deep-Learning Network in Dense Beans by Using Hough Circle Transform for Coffee Industry,” in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), IEEE, Oct. 2019, pp. 798–805. doi: 10.1109/SMC.2019.8914175.

T.-T. Chen et al., “Deep-Learning-Based Defective Bean Inspection with GAN-Structured Automated Labeled Data Augmentation in Coffee Industry,” Applied Sciences, vol. 9, no. 19, p. 4166, Oct. 2019, doi: 10.3390/app9194166.

K. Katoh and H. Toh, “Recent developments in the MAFFT multiple sequence alignment program,” Brief Bioinform, vol. 9, no. 4, pp. 286–298, Mar. 2008, doi: 10.1093/bib/bbn013.

A. Riul Jr., C. A. R. Dantas, C. M. Miyazaki, and O. N. Oliveira Jr., “Recent advances in electronic tongues,” Analyst, vol. 135, no. 10, p. 2481, 2010, doi: 10.1039/c0an00292e.

A. Gaidon, Z. Harchaoui, and C. Schmid, “Temporal Localization of Actions with Actoms,” IEEE Trans Pattern Anal Mach Intell, vol. 35, no. 11, pp. 2782–2795, Nov. 2013, doi: 10.1109/TPAMI.2013.65.

S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain, Semantic Similarity from Natural Language and Ontology Analysis. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-031-02156-5.

A. R. Subramanian, J. Weyer-Menkhoff, M. Kaufmann, and B. Morgenstern, “DIALIGN-T: An improved algorithm for segment-based multiple sequence alignment,” BMC Bioinformatics, vol. 6, no. 1, p. 66, 2005, doi: 10.1186/1471-2105-6-66.

L. Kouadio, R. C. Deo, V. Byrareddy, J. F. Adamowski, S. Mushtaq, and V. Phuong Nguyen, “Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties,” Comput Electron Agric, vol. 155, pp. 324–338, Dec. 2018, doi: 10.1016/j.compag.2018.10.014.

A. Prest, V. Ferrari, and C. Schmid, “Explicit Modeling of Human-Object Interactions in Realistic Videos,” IEEE Trans Pattern Anal Mach Intell, vol. 35, no. 4, pp. 835–848, Apr. 2013, doi: 10.1109/TPAMI.2012.175.

E. M. de Oliveira, D. S. Leme, B. H. G. Barbosa, M. P. Rodarte, and R. G. F. A. Pereira, “A computer vision system for coffee beans classification based on computational intelligence techniques,” J Food Eng, vol. 171, pp. 22–27, Feb. 2016, doi: 10.1016/j.jfoodeng.2015.10.009.

H.-W. Gellersen, M. Beigl, and H. Krull, “The MediaCup: Awareness Technology Embedded in an Everyday Object,” 1999, pp. 308–310. doi: 10.1007/3-540-48157-5_30.

W. J. Scheideler, R. Kumar, A. R. Zeumault, and V. Subramanian, “Low?Temperature?Processed Printed Metal Oxide Transistors Based on Pure Aqueous Inks,” Adv Funct Mater, vol. 27, no. 14, Apr. 2017, doi: 10.1002/adfm.201606062.

C. Veloutsou and C. Ruiz Mafe, “Brands as relationship builders in the virtual world: A bibliometric analysis,” Electron Commer Res Appl, vol. 39, p. 100901, Jan. 2020, doi: 10.1016/j.elerap.2019.100901.

A. Caputo, S. Pizzi, M. M. Pellegrini, and M. Dabi?, “Digitalization and business models: Where are we going? A science map of the field,” J Bus Res, vol. 123, pp. 489–501, Feb. 2021, doi: 10.1016/j.jbusres.2020.09.053.

M. J. Cobo, A. G. López-Herrera, E. Herrera-Viedma, and F. Herrera, “Science mapping software tools: Review, analysis, and cooperative study among tools,” Journal of the American Society for Information Science and Technology, vol. 62, no. 7, pp. 1382–1402, Jul. 2011, doi: 10.1002/asi.21525.

D. Chen, D. Zhang, and A. Liu, “Intelligent Kano classification of product features based on customer reviews,” CIRP Annals, vol. 68, no. 1, pp. 149–152, 2019, doi: 10.1016/j.cirp.2019.04.046.

P. Oliveira Lima Junior, L. Gonzaga de Castro Junior, and A. Luiz Zambalde, “Applying Textmining to Classify News About Supply and Demand in the Coffee Market,” IEEE Latin America Transactions, vol. 14, no. 12, pp. 4768–4774, Dec. 2016, doi: 10.1109/TLA.2016.7817009.

K. Lagos-Ortiz, J. Medina-Moreira, A. Alarcón-Salvatierra, M. F. Morán, J. del Cioppo-Morstadt, and R. Valencia-García, “Decision Support System for the Control and Monitoring of Crops,” 2019, pp. 20–28. doi: 10.1007/978-3-030-10728-4_3.

P. Oliveira Lima Junior, L. Gonzada de Castro Junior, and A. Luiz Zambalde, “Analysis of Machine Learning Techniques to Classify News for Information Management in Coffee Market,” IEEE Latin America Transactions, vol. 13, no. 7, pp. 2285–2291, Jul. 2015, doi: 10.1109/TLA.2015.7273789.

B. T. W. Putra, P. Soni, B. Marhaenanto, Pujiyanto, S. Sisbudi Harsono, and S. Fountas, “Using information from images for plantation monitoring: A review of solutions for smallholders,” Information Processing in Agriculture, vol. 7, no. 1, pp. 109–119, Mar. 2020, doi: 10.1016/j.inpa.2019.04.005.

E. Phaisangittisagul, “Approximating Sensors’ Responses of Odor Mixture on Machine Olfaction,” in 2009 International Conference on Artificial Intelligence and Computational Intelligence, IEEE, 2009, pp. 60–64. doi: 10.1109/AICI.2009.75.

J. P. Rodríguez, E. J. Girón, D. C. Corrales, and J. C. Corrales, “A Guideline for Building Large Coffee Rust Samples Applying Machine Learning Methods,” 2018, pp. 97–110. doi: 10.1007/978-3-319-70187-5_8.

J. P. Rodríguez, D. C. Corrales, and J. C. Corrales, “A Process for Increasing the Samples of Coffee Rust Through Machine Learning Methods,” International Journal of Agricultural and Environmental Information Systems, vol. 9, no. 2, pp. 32–52, Apr. 2018, doi: 10.4018/IJAEIS.2018040103.

L. M. T. de Carvalho, J. G. P. W. Clevers, A. K. Skidmore, and S. M. de Jong, “Selection of imagery data and classifiers for mapping Brazilian semideciduous Atlantic forests,” International Journal of Applied Earth Observation and Geoinformation, vol. 5, no. 3, pp. 173–186, Sep. 2004, doi: 10.1016/j.jag.2004.02.002.

M. F. de Oliveira, A. F. dos Santos, E. H. Kazama, G. de S. Rolim, and R. P. da Silva, “Determination of application volume for coffee plantations using artificial neural networks and remote sensing,” Comput Electron Agric, vol. 184, p. 106096, May 2021, doi: 10.1016/j.compag.2021.106096.

Published

2025-01-03

How to Cite

[1]
E. Largo Avila, C. H. Suárez Rodríguez, and E. Arango Espinal, “Digital Transformation: Evolving Applications of Artificial Intelligence in the Coffee Industry”, Ing. y Des., vol. 43, no. 1, pp. 64–83, Jan. 2025.