Climatic and macroeconomic factors associated with the price of criolla potato in Bogotá: an analysis using time-lagged models

Authors

  • Néstor Cordero Sáenz Universidad de La Salle, Colombia
  • Wilson Vergara Vergara Universidad de la Salle, Colombia
  • Jahir Rodríguez Riveros Minuto de Dios University Corporation, Colombia

Keywords:

TRM, Solanum phureja, econometric models, climate, agricultural prices

Abstract

This study analyzes the relationship between climatic and macroeconomic variables and the price of Solanum phureja (criolla potato) in Bogotá, Colombia, during the 2014–2023 period. Time-lagged econometric models of up to six months, Pearson correlation coefficients, and multiple regression analyses were applied. Results show that the Representative Market Rate (TRM) and extreme climatic phenomena (El Niño/La Niña) are the main determinants of price dynamics, while rainfall and fertilizer prices exhibited no statistical significance. The findings provide empirical evidence on the drivers of price volatility in the criolla potato market and offer practical insights for risk management and policy design in the agricultural sector, particularly under the increasing influence of climatic and economic uncertainty.

Time-lagged regression models (up to six months), Pearson correlation coefficients, and multiple regression analysis were applied to identify significant associations. Results show that the TRM is the most influential variable, followed by climatic anomalies and oil prices. Conversely, precipitation and urea prices were not statistically significant, possibly due to limitations in data representativeness.

The findings provide empirical insights into decision-makers in the agricultural sector, supporting more informed risk management strategies and policy development in the context of increasing price volatility in food markets.

Author Biographies

  • Néstor Cordero Sáenz, Universidad de La Salle, Colombia

    Industrial Engineer, Master in Agribusiness, and Ph.D. candidate in Business Administration. Research Professor at Universidad de la Salle. Consultant for the Rural Observatory of La Salle and professor in undergraduate and graduate programs of Business Intelligence, Data Analytics, and Operations Research for rural areas.

  • Wilson Vergara Vergara, Universidad de la Salle, Colombia

    Zootechnician, Master in Economic Sciences, Doctor in Agricultural Sciences. Research professor at Universidad de La Salle. Consultant for the Rural Observatory of Universidad de La Salle. Undergraduate and graduate professor in the areas of Agrarian Policy, Rural Development, Agricultural Economics, and Project Evaluation. External consultant in the evaluation of environmental and agricultural goods.

  • Jahir Rodríguez Riveros, Minuto de Dios University Corporation, Colombia

    Industrial Engineer, Master in Analytical Intelligence for Decision Making. Currently works as a university professor in the areas of Operations Research, Artificial Intelligence and Simulation at the Minuto de Dios University Corporation.

References

?Araujo, V. H. B. (2025). Impacto do capital humano no crescimento econômico dos municípios do Paraná: Uma análise espacial de 2002 a 2021. Revista de Economía del Caribe, 36.

?Barrientos, J., Rondón, C., & Melo, S. (2014). Price performance of the potato varieties Parda Pastusa and Diacol Capiro in Colombia (1995-2011). Revista Colombiana de Ciencias Hortícolas, 8(2), 272–286.

?Dekanmbi, T., Wang, X., Basheer, S., Liu, S., Yang, A., & Cheng, H. (2024). Climate change impacts on global potato yields: A review. Environmental Research: Climate, 3(1), 012001. https://doi.org/10.1088/2752-5295/ad0e13

?Duque, J. J. (2007). Una aproximación empírica 1 The role of financial speculation in the rise in food prices from. [Fuente, editorial o tipo de publicación faltante].

?FAO. (2010). Economic and social perspectives: Price volatility in agricultural markets. http://www.fao.org/economic/es-policybriefs

?FEDEPAPA. (2022). Boletín regional resumen nacional generalidades. [Tipo de publicación y URL faltantes].

?García, E., & Bonilla, J. (2023). Informe política monetaria octubre 2023. [Fuente o editorial faltante].

?Gilbert, C. L., & Morgan, C. W. (2010). Food price volatility. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 3023–3034. https://doi.org/10.1098/rstb.2010.0139

?Indexmundi. (2024, 1 de diciembre). Urea precio mensual - dólares americanos por tonelada métrica. https://www.spanishdict.com/translate/faltante.

?Kalkuhl, M., Torero, M., & Von Braun, J. (2017). Food price volatility causal impacts food price volatility drivers (1st ed.). Zentrum für Entwicklungsforschung (ZEF). www.zef.de

?Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of Econometrics, 17, 107–112.

?Kutner, M. H., Nachtsheim, C. J., & Li, W. (2004). Applied linear statistical models (5th ed.). McGraw-Hill Irwin.

?Lähde, V., Vadén, T., Toivanen, T., Järvensivu, P., & Eronen, J. T. (2023). The crises inherent in the success of the global food system. Ecology and Society, 28(4). https://doi.org/10.5751/ES-14624-280416

?Li, H., & Lee, K.-S. (2024). The impact of economic policy uncertainty on agricultural prices: Evidence from China. Asia and the Global Economy, 1, 4–5.

?Martínez, C. (2017). Análisis de los determinantes del precio de papa parda pastusa en el departamento de Cundinamarca: Una perspectiva del sector para el periodo 1987-2016 [Tesis de maestría no publicada]. Escuela Colombiana de Ingeniereía.

?MINAGRICULTURA. (2024, 20 de abril). Mercados agrícolas y ganaderos. https://www.mapa.gob.es/es/agricultura/estadisticas/mercados_agricolas_ganaderos.aspx

?Mohd Razali, N., & Bee Wah, Y. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2. [Número de fascículo y rango de páginas faltantes].

?Mohyuddin, G., Khan, M. A., Haseeb, A., Mahpara, S., Waseem, M., & Saleh, A. M. (2024). Evaluation of machine learning approaches for precision farming in smart agriculture system: A comprehensive review. IEEE Access, 12, 60155–60184. https://doi.org/10.1109/ACCESS.2024.3390581

?OCDE-FAO. (2009). Perspectivas agrícolas. www.oecd.org/publishing/corrigenda

?Orduz, M., & García, E. (2023). Impacto de las variables económicas sobre los precios de los fertilizantes en el sector de la caña de azúcar en el Valle del Cauca (Colombia). EAFIT. [Tipo de publicación faltante, asumido como documento de trabajo].

?Roitbarg, H. A. (2021). Factors behind the price increase in the agricultural sector at the beginning of the twenty-first century: Rent, wages, oil and productivity. Desarrollo y Sociedad, 2021(88), 169–199. https://doi.org/10.13043/DYS.88.5

?Ruiz, A., & Pabón, J. (2013). Effect of the El Niño and La Niña phenomena on precipitation and agricultural production in the department of Atlántico (Colombia). Revista Colombiana de Geografía, 22, 35–54. [Número de fascículo faltante].

?Thimsen, E. (2024). Planetary energy flow and entropy production rate by Earth from 2002 to 2023. Entropy, 26(5). https://doi.org/10.3390/e26050350

?UPRA. (2023). Plan de ordenamiento productivo para la cadena de la papa en Colombia. https://www.upra.gov.co/es-co/POP_Documentos/POP_Cadena_Papa.pdf

?UPRA. (2024). Evaluaciones agropecuarias municipales. https://www.spanishdict.com/translate/faltante.

?Vera-Ninacondor, C. P., Cusihuamán-Sisa, G. N., Condori, J. G. A., & Aguilar-Del-carpio, C. I. (2023). Elasticity in the behavior of the producer, according to the supply of rice in Peru. TECHNO Review. International Technology, Science and Society Review / Revista Internacional de Tecnología, Ciencia y Sociedad, 15(1). https://doi.org/10.37467/revtechno.v15.5066

?Xue, Z., Hou, Y., Cao, G., & Sun, G. (2024). How does digital transformation drive innovation in Chinese agribusiness: Mechanism and micro evidence. Journal of Innovation and Knowledge, 9(2). https://doi.org/10.1016/j.jik.2024.100489

Published

2025-12-30

Issue

Section

Science article