Regulação antitruste adaptativa para mercados algorítmicos: integrando economia comportamental e escolha racional na governança digital

Autores

  • Fernando Ramos Universidade Privada do Norte, Peru

Palavras-chave:

regulação antitruste, economia comportamental, escolha racional, regulação algorítmica, inteligência artificial

Resumo

A digitalização acelerada dos mercados e a automação da tomada de decisões econômicas por meio de algoritmos têm superado os marcos tradicionais do direito da concorrência, dando origem a novas formas de poder econômico e de coordenação tácita que desafiam a capacidade regulatória dos Estados. Nesse sentido, este artigo propõe um arcabouço jurídico para a regulação antitruste em ambientes algorítmicos, combinando a teoria da escolha racional com a economia comportamental, a fim de equilibrar a coerência normativa, a efetividade dissuasória e a adaptabilidade tecnológica.

Os resultados revelam que a economia comportamental, embora ofereça ferramentas valiosas para compreender vieses cognitivos e dinâmicas organizacionais, carece de uma teoria normativa eficaz que assegure a proporcionalidade e a coerência sancionatória. Com base nesse diagnóstico, o estudo propõe um arcabouço jurídico que preserva a racionalidade estrutural do direito, integra mecanismos comportamentais e estabelece padrões de transparência e auditabilidade algorítmica. Assim, avança-se na redefinição da aplicação do direito antitruste, buscando conciliar legitimidade democrática, efetividade empírica e adaptabilidade tecnológica.

Biografia do Autor

  • Fernando Ramos, Universidade Privada do Norte, Peru

    Advogado pela Universidad Peruana de Ciências Aplicadas, Peru. Mestre em Gerência Social, Pontifícia Universidade Católica do Peru.

Referências

Abbott, K. W., & Snidal, D. (2000). Hard and Soft Law in International Governance. International Organization, 54(3), 421–456. https://doi.org/10.1162/002081800551280

Acquisti, A., Taylor, C., & Wagman, L. (2016). The Economics of Privacy. Journal of Economic Literature, 54(2), 442–492. https://doi.org/10.1257/jel.54.2.442

Alemanno, A., & Sibony, A.-L. (Eds.). (2015). Nudge and the Law: A European Perspective (Illustrated). Bloomsbury Academic.

Alemanno, A., & Spina, A. (2014). Nudging legally: On the checks and balances of behavioral regulation. International Journal of Constitutional Law, 12(2), 429–456. https://doi.org/10.1093/icon/mou033

Ashforth, B. E., & Anand, V. (2003). The normalization of corruption in organizations. Research in Organizational Behavior, 25, 1–52. https://doi.org/10.1016/S0191-3085(03)25001-2

Bazerman, M. H., & Tenbrunsel, A. E. (2011). Blind Spots: Why We Fail to Do What’s Right and What to Do about It (Illustrated). Princeton University Press.

Becker, G. S. (1968). Crime and Punishment: An Economic Approach. Journal of Political Economy, 76(2), 169–217. https://doi.org/10.1086/259394

Bovens, L. (2009). The Ethics of Nudge. En T. Grüne-Yanoff & S. O. Hansson (Eds.), Preference Change (pp. 207–219). Springer Netherlands. https://doi.org/10.1007/978-90-481-2593-7_10

Bradford, A. (2020). The Brussels Effect: How the European Union Rules the World (1a ed.). Oxford University PressNew York. https://doi.org/10.1093/oso/9780190088583.001.0001

Bubb, R., & Pildes, R. H. (2014). How Behavioral Economics Trims Its Sails and Why: The Tension between Policy and Social Science in Behavioral Law and Economics. Harvard Law Review, 127(6), 1593–1678. https://harvardlawreview.org/print/vol-127/how-behavioral-economics-trims-its-sails-and-why/

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 2053951715622512. https://doi.org/10.1177/2053951715622512

Calvano, E., Calzolari, G., Denicolò, V., & Pastorello, S. (2020). Artificial Intelligence, Algorithmic Pricing, and Collusion. American Economic Review, 110(10), 3267–3297. https://doi.org/10.1257/aer.20190623

Camerer, C., Loewenstein, G., & Prelec, D. (2005). Neuroeconomics: How Neuroscience Can Inform Economics. Journal of Economic Literature, 43(1), 9–64. https://doi.org/10.1257/0022051053737843

Cavoukian, A. (2010). Privacy by design: The definitive workshop. A foreword by Ann Cavoukian, Ph.D. Identity in the Information Society, 3(2), 247–251. https://doi.org/10.1007/s12394-010-0062-y

Citron, D. K., & Pasquale, F. (2014). The Scored Society: Due Process for Automated Predictions. Washington Law Review, 89(1), 1–34. https://digitalcommons.law.uw.edu/wlr/vol89/iss1/2

Cyert, R. M., Feigenbaum, E. A., & March, J. G. (1959). Models in a behavioral theory of the firm. Behavioral Science, 4(2), 81–95. https://doi.org/10.1002/bs.3830040202

Dworkin, R. (1986). Law’s Empire (Illustrated). Harvard University Press.

Elster, J. (1989). Nuts and Bolts for the Social Sciences (1a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511812255

Ezrachi, A., & Stucke, M. (2016). Virtual Competition: The Promise and Perils of the Algorithm-Driven Economy. Harvard University Press. https://doi.org/10.4159/9780674973336

Fehr, E., & Gächter, S. (2000). Cooperation and Punishment in Public Goods Experiments. American Economic Review, 90(4), 980–994. https://doi.org/10.1257/aer.90.4.980

Fletcher, A. (2023). International pro-competition regulation of digital platforms: Healthy experimentation or dangerous fragmentation? Oxford Review of Economic Policy, 39(1), 12–33. https://doi.org/10.1093/oxrep/grac047

Frederick, S., Loewenstein, G., & O’donoghue, T. (2002). Time Discounting and Time Preference: A Critical Review. Journal of Economic Literature, 40(2), 351–401. https://doi.org/10.1257/jel.40.2.351

Fuller, L. L. (1969). The Morality of Law (Revised). Yale University Press.

Gigerenzer, G. (2007). Gut Feelings: The Intelligence of the Unconscious. Penguin.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103(4), 650–669. https://doi.org/10.1037/0033-295X.103.4.650

Gilovich, T., Griffin, D., & Kahneman, D. (Eds.). (2002). Heuristics and Biases: The Psychology of Intuitive Judgment (1a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511808098

Gutmann, J., Neuenkirch, M., Neumeier, F., & Steinbach, A. (2018). Economic Sanctions and Human Rights: Quantifying the Legal Proportionality Principle. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3175885

Harrington, J. E. (2018). Developing competition law for collusion by autonomous artificial agents. Journal of Competition Law & Economics, 14(3), 331–363. https://doi.org/10.1093/joclec/nhy016

Hart, H. L. A. (1968). Punishment and Responsibility: Essays in the Philosophy of Law. Oxford University Press.

Ireland, D. J. (2024). Behavioral Economics, Regulatory Compliance and Performance, And The Compliance Continuum. SSRN. https://doi.org/10.2139/ssrn.4952636

Johnson, E. J., & Goldstein, D. (2003). Do Defaults Save Lives? Science, 302(5649), 1338–1339. https://doi.org/10.1126/science.1091721

Johnson, E. J., Shu, S. B., Dellaert, B. G. C., Fox, C., Goldstein, D. G., Häubl, G., Larrick, R. P., Payne, J. W., Peters, E., Schkade, D., Wansink, B., & Weber, E. U. (2012). Beyond nudges: Tools of a choice architecture. Marketing Letters, 23(2), 487–504. https://doi.org/10.1007/s11002-012-9186-1

Joskow, P. L. (2002). Transaction Cost Economics, Antitrust Rules, and Remedies. Journal of Law, Economics, and Organization, 18(1), 95–116. https://doi.org/10.1093/jleo/18.1.95

Kahneman, D. (2011). Thinking, Fast and Slow (Illustrated, reprinted, and revised). Farrar, Straus and Giroux.

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263. https://doi.org/10.2307/1914185

Kaplow, L. (1992). Rules versus Standards: An Economic Analysis. Duke Law Journal, 42(3), 557. https://doi.org/10.2307/1372840

Kaplow, L., & Shavell, S. (1994). Optimal Law Enforcement with Self-Reporting of Behavior. Journal of Political Economy, 102(3), 583–606. https://doi.org/10.1086/261947

Kaplow, L., & Shavell, S. (2001). Fairness versus Welfare. Harvard Law Review, 114(4), 961. https://doi.org/10.2307/1342642

Khan, L. M. (2017). Amazon’s Antitrust Paradox. Yale Law Journal, 126(3), 710–805. https://www.yalelawjournal.org/note/amazons-antitrust-paradox

Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108(3), 480–498. https://doi.org/10.1037/0033-2909.108.3.480

Laibson, D. (1997). Golden Eggs and Hyperbolic Discounting. The Quarterly Journal of Economics, 112(2), 443–478. https://doi.org/10.1162/003355397555253

Levitt, S. D., & List, J. A. (2007). What Do Laboratory Experiments Measuring Social Preferences Reveal About the Real World? Journal of Economic Perspectives, 21(2), 153–174. https://doi.org/10.1257/jep.21.2.153

Li, Q., & Cauffman, C. (2025). Abuse of Relative Dominance by Digital Platforms: A Law and Economics Perspective. GRUR International, 74(3), 217–225. https://doi.org/10.1093/grurint/ikaf001

Loewenstein, G., Bryce, C., Hagmann, D., & Rajpal, S. (2015). Warning: You are about to be Nudged. Behavioral Science & Policy, 1(1), 35–42. https://doi.org/10.1177/237946151500100106

Loewenstein, G., & Chater, N. (2017). Putting nudges in perspective. Behavioural Public Policy, 1(1), 26–53. https://doi.org/10.1017/bpp.2016.7

Loewenstein, G. F., & Haisley, E. C. (2007). The Economist as Therapist: Methodological Ramifications of “Light” Paternalism. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.962472

Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annual Review of Psychology, 59(1), 647–672. https://doi.org/10.1146/annurev.psych.59.103006.093710

March, J. G., & Simon, H. A. (1993). Organizations (2nd, illustrated and reprinted eds.). John Wiley & Sons.

Mehra, S. K. (2016). Antitrust and the Robo-Seller: Competition in the Time of Algorithms. Minnesota Law Review, 100, 1323–1375. https://scholarship.law.umn.edu/mlr/204

Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review, 115(2), 502–517. https://doi.org/10.1037/0033-295X.115.2.502

Motta, M. (2004). Competition Policy: Theory and Practice (1a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511804038

North, D. C. (1990). Institutions, Institutional Change and Economic Performance (1a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511808678

OECD. (2016). Big Data: Bringing Competition Policy to the Digital Era (OECD Competition Law and Policy Working Papers No. 193; OECD Competition Law and Policy Working Papers, Vol. 193). https://doi.org/10.1787/a1c2d55c-en

Ostrom, E. (2009). Understanding Institutional Diversity (Illustrated). Princeton University Press.

Palazzo, G., Krings, F., & Hoffrage, U. (2012). Ethical Blindness. Journal of Business Ethics, 109(3), 323–338. https://doi.org/10.1007/s10551-011-1130-4

Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money and Information (Illustrated). Harvard University Press.

Rebonato, R. (2013). A Critical Assessment of Libertarian Paternalism. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2346212

Russell, S. J., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.

Sabel, C. F., & Simon, W. H. (2011). Minimalism and Experimentalism in the Administrative State. Georgetown Law Journal, 100(53), 53–94. https://scholarship.law.columbia.edu/faculty_scholarship/735

Senden, L. (2004). Soft Law in European Community Law (Vol. 1). Hart.

Shapiro, C. (1989). Chapter 6 Theories of oligopoly behavior. En Handbook of Industrial Organization (Vol. 1, pp. 329–414). Elsevier. https://doi.org/10.1016/S1573-448X(89)01009-5

Shavell, S. (1985). Criminal Law and the Optimal Use of Nonmonetary Sanctions as a Deterrent. Columbia Law Review, 85(6), 1232. https://doi.org/10.2307/1122393

Shavell, S. (2004). Foundations of Economic Analysis of Law. Harvard University Press.

Shelanski, H. A. (2013). Information, Innovation, and Competition Policy for the Internet. University of Pennsylvania Law Review, 161(6), 1663–1705. https://scholarship.law.upenn.edu/penn_law_review/vol161/iss6/6

Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of Economics, 69(1), 99. https://doi.org/10.2307/1884852

Stucke, M., & Grunes, A. (2016). Big Data and Competition Policy (1a ed.). Oxford University Press. https://doi.org/10.1093/law:ocl/9780198788133.001.0001

Sugden, R. (2009). On Nudging: A Review of Nudge: Improving Decisions About Health, Wealth and Happiness by Richard H. Thaler and Cass R. Sunstein. International Journal of the Economics of Business, 16(3), 365–373. https://doi.org/10.1080/13571510903227064

Sunstein, C. R. (2014). Why Nudge? The Politics of Libertarian Paternalism. Yale University Press.

Sunstein, C. R. (2016). The Ethics of Influence: Government in the Age of Behavioral Science (1a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781316493021

Thaler, R. H., & Benartzi, S. (2004). Save More TomorrowTM: Using Behavioral Economics to Increase Employee Saving. Journal of Political Economy, 112(S1), S164–S187. https://doi.org/10.1086/380085

Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth, and happiness. Yale University Press.

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124

Tversky, A., & Kahneman, D. (1981). The Framing of Decisions and the Psychology of Choice. Science, 211(4481), 453–458. https://doi.org/10.1126/science.7455683

Tyler, T. R. (2006). Why people obey the law (2nd ed.). Princeton University Press.

von Neumann, J., & Morgenstern, O. (2007). Theory of Games and Economic Behavior (Commemorative Edition). Princeton University Press.

Yeung, K. (2017). ‘Hypernudge’: Big Data as a mode of regulation by design. Information, Communication & Society, 20(1), 118–136. https://doi.org/10.1080/1369118X.2016.1186713

Yun, J. M. (2020). Overview of Network Effects & Platforms in Digital Markets. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3733656

Zarsky, T. (2016). The Trouble with Algorithmic Decisions: An Analytic Road Map to Examine Efficiency and Fairness in Automated and Opaque Decision Making. Science, Technology, & Human Values, 41(1), 118–132. https://doi.org/10.1177/0162243915605575

Zeelenberg, M., & Van Dijk, E. (1997). A reverse sunk cost effect in risky decision making: Sometimes we have too much invested to gamble. Journal of Economic Psychology, 18(6), 677–691. https://doi.org/10.1016/S0167-4870(97)00029-9

Publicado

2025-12-30

Edição

Seção

Original reflection article