Corrección por exposición de las velocidades de viento medidas en dos estaciones de Cuba

Autores/as

  • Camila Aldereguía Sánchez Universidad Tecnológica de La Habana José A. Echeverría CUJAE
  • Javier Ballote Álvarez Universidad Tecnológica de La Habana José A. Echeverría CUJAE
  • Ingrid Fernández Lorenzo Universidad Tecnológica de La Habana José A. Echeverría CUJAE
  • Vivian Beatriz Elena Parnás Universidad Tecnológica de La Habana José A. Echeverría CUJAE

DOI:

https://doi.org/10.14482/inde.39.2.624.175

Palabras clave:

factor de corrección por exposición, LandSat, longitud de rugosidad, NDVI, vientos extremos

Resumen

La velocidad básica de viento es determinante en el diseño de obras de ingeniería frente a la acción del viento. Esta velocidad se obtiene a partir de datos de estaciones meteorológicas que cumplen con determinados requerimientos de ubicación y se estima por diferentes métodos estadísticos. En ocasiones las estaciones no cumplen con las condiciones ideales de ubicación, por lo que se hace necesario hacer correcciones a los datos medidos. El objetivo de este trabajo es obtener un factor de corrección para las velocidades del viento medidas en condiciones de ubicación no ideales y comparar las velocidades básicas obtenidas con los valores propuestos para la región de Cuba en estudios internacionales. Se seleccionaron dos estaciones meteorológicas con diferentes rugosidades y se determinaron las velocidades básicas a partir del Método de Tormentas Independientes (MIS). La rugosidad se determinó mediante la aplicación del método de las clasificaciones y el método morfométrico con uso de imágenes del satélite LandSat 8. Los resultados muestran que las velocidades básicas de viento corregidas son similares por ambos métodos. La comparación con los estudios internacionales solo evidenció una adecuada correspondencia en una de las estaciones, por lo que debe ampliarse el estudio a mayor número de estaciones.

Biografía del autor/a

Camila Aldereguía Sánchez, Universidad Tecnológica de La Habana José A. Echeverría CUJAE

Departamento de Estructuras. Adiestrada. Ingeniera Civil.

Javier Ballote Álvarez, Universidad Tecnológica de La Habana José A. Echeverría CUJAE

Departamento de Geociencias. Ingeniero Geofísico

Ingrid Fernández Lorenzo, Universidad Tecnológica de La Habana José A. Echeverría CUJAE

Departamento de Estructuras. Doctora en Ciencias Ingeniera Civil.

Vivian Beatriz Elena Parnás, Universidad Tecnológica de La Habana José A. Echeverría CUJAE

Departamento de Estructuras. Doctora en Ciencias Ingeniera Civil.

Citas

I. Fernández et al. "Análisis de métodos de vientos extremos para calcular las velocidades básicas," Revista Cubana de Ingeniería, vol. 7, pp. 15-25, 2016.

NC-285, Carga de viento. Método de cálculo, 2003 Cuba.

J. I. Pickands, "Statistical inference using extreme order statistics " The annals of statistics, vol. 3, pp. 119-131, 1975.

N. J. Cook, "Towards better estimation of extreme winds," Journal of Wind Engineering & Industrial Aerodynamics, vol. 9, pp. 295-323, 1982.

Australian/New Zeland Standart: Structural Design actions, Part 2: Wind Actions, 2011.

American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, 2016.

IS: 875 (Part 3). Wind Loads on Buildings and Structures - Proposed draft & Commentary. Document No: IITK GSDMA-Wind 02-V 50, 2012.

R. Pascual, "Fuerzas del viento sobre las estructuras. Fuerzas producidas por los vientos extremos," Ingeniería Civil, vol. 28, no. 1, pp. 1-77, 1977.

O. Pérez, "Velocidades máximas del viento de diferentes frecuencia y dirección para el cálculo de la altura de las olas en los embalses," Ingeniería Civil, vol. 25, no. 4, pp. 367-393, 1974.

A. Kruger et al. "Strong winds in South Africa: Part 2 Mapping of updated statistics," Journal of the south african institution of civil engineering, vol. 55, no. 2, pp. 46-58, 8/1/2013 2013.

I. Fernández et al. "Utilización del Método de Tormentas Independientes para el cálculo de velocidades básicas de viento en Cuba," presentado en 11no Simposio Internacional de Estructuras, Geotecnia y Materiales de la Construcción, Universidad Central "Marta Abreu" de Las Villas, 2017.

J. Wieringa, "An objective exposure correction method for average wind speeds measured at a sheltered location," Quarterly Journal of the Royal Meteorological Society, vol. 102, no. 431, pp. 241-253, 1/1/1976 1976. https://doi.org/10.1002/qj.49710243119

Y. C. He et al. "Estimation of roughness length at Hong Kong International Airport via different micrometeorological methods," Journal of Wind Engineering & Industrial Aerodynamics, vol. 171, pp. 121-136, 2017. https://doi.org/10.1016/j.jweia.2017.09.019

F. T. Lombardo et al. "Charactetization and comparison of aerodynamic roughness lengths using ground-based photography and sonic anemometry," Journal of Structural Engineering, 2017. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001768

C. W. Kent et al. "Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas," Boundary-Layer Meteorology, vol. 164, pp. 183-213, 28/4/2017 2017. https://doi.org/10.1007/s10546-017-0248-z

G. V. Gaona et al. "Estimación de la longitud de rugosidad aerodinámica a partir de imágenes MODIS y LandSat," 2015.

J. Godlowska and W. Kaszowski, "Testing various morphometric methods for determining the vertical profile of wind speed above Krakow, Poland," Boundary-Layer Meteorology, 2019. https://doi.org/10.1007/s10546-019-00440-9

A. Li et al. "Aerodynamic roughness length estimation with LiDAR and imaging spectroscopy in a shrub-dominated dryland," Photogrammetric Engineering & Remote Sensing, 2017. http://dx.doi.org/10.14358/PERS.83.6.415

R. J. Barthelmie at al. "Estimation of sector roughness lengths and the effect on prediction of the vertical wind speed profile," Boundary Layer Meteorology, vol. 66, pp. 19-47, 10/1/1993 1993. https://doi.org/10.1007/BF00705458

C. Palese et al. "Mapa de Rugosidad Aerodinámica Superficial de la Ciudad de Neuquén " presentado en Actas Primer Congreso Latinoamericano de Ingeniería de Viento, 2008, vol. 8. https://doi.org/10.13140/RG.2.1.2454.4800

J. Silva et al. "Roughness length classification of Corine Land Cover classes," presentado en Proceedings of the European Wind Energy Conference, Milan, Italy, 2007, vol. 710, p. 110: Citeseer.

A. G. Davenport, "Rationale for determining design wind velocities," Journal of the Structural Division, vol. 86, pp. 39-68, 1960.

J. Wieringa, "Updating the Davenport roughness classification," Journal of Wind Engineering & Industrial Aerodynamics, vol. 41-44, pp. 357-368, 1992. https://doi.org/10.1016/0167-6105(92)90434-C

N. Robinson et al., "A dynamic LandSat derived Normalized Difference Vegetation Index (NDVI) product for conterminous United States," Remote sensing, vol. 9, 2017. https://doi.org/10.3390/rs9080863

I. J. Condori et al. "Análisis multitemporal de la cobertura boscosa empleando la metodología de teledetección espacial y SIG en la sub-cuenca del río Coroico- provincia Caranavi en los años 1989-2014," Journal of the Selva Andina Research Society, vol. 9, pp. 25-44, 2018. https://doi.org/10.1016/j.procs.2015.07.415

M. Abbas, H. Mahmod, B. Bin, and T. Abbas, "Surface roughness distribution map for Iraq using satellite data and GIS techniques," Arabian Journal of Geosciences, p. 13, 2020. https://doi.org/10.1007/s12517-020-05802-z

M. Rashid, A. Bin, T. Rashid, B. Bin, and H. Dutsenwai, "Assessment of aerodynamic roughness length using remotely sensed land cover features and MODIS," presented at the 1st International virtual conference of environmental sciences, 2021. https://doi.org/10.1088/1755-1315/722/1/012015

T. Ullmann and G. Stauch, "Surface roughness estimation in the Orog Nuur Basin (Southern Mongolia) using Sentinel-1 SAR times series and ground-based photogrammetry," Remote sensing, vol. 12, 2020. https://doi.org/10.3390/rs12193200

M. S. Moran, "A satellite-based approach for evaluation of the spatial distribution of evapotranspiration from agricultural lands," Doctor of philosophy, Department of soil and water science, The university of Arizona, 1990.

M. Yu et al. "A method for estimating the aerodynamic roughness length with NDVI and BRDF signatures using multi-temporal Proba-V data," Remote sensing, 2017. http://doi.org/10.3390/rs9010006

P. J. Vickery, "Design wind speeds in the Caribbean," presentado en Advances in Hurricane Engineering 2012. https://doi.org/10.1061/9780784412626.099

A. Vladimirovich, "Understanding the impact of vegetation on surface roughness length for enhancing wind resource characterization in Iowa," Master of Science, University of Nothern Iowa, 2014.

E. Chuvieco, "Fundamentos de teledetección espacial (no. 526.982 C564 1996)". Ediciones Rialp, 1996.

F. Delgado et al. "Vegetación de la reserva de la biosfera Península de Guanahacabibes, Cuba," ECOVIDA, vol. 4, 2013.

M. R. Raupach et al. "Rough wall turbulent boundary layers," Applied Mechanics Reviews, vol. 44, pp. 1-25, 1991. https://doi.org/10.1115/1.3119492

H. Ishizaki, "Wind profiles, turbulence intensities and gust factors for design in typhoon-prone regions," Journal of Wind Engineering and Industrial Aerodynamics, vol. 13, no. 1–3, pp. 55-66, 1983. https://doi.org/10.1016/0167-6105(83)90128-9

Descargas

Publicado

2021-07-02

Cómo citar

[1]
C. Aldereguía Sánchez, J. Ballote Álvarez, I. Fernández Lorenzo, y V. B. Elena Parnás, «Corrección por exposición de las velocidades de viento medidas en dos estaciones de Cuba», Ing. y Des., vol. 39, n.º 2, pp. 239–258, jul. 2021.

Número

Sección

Artículos