Determination of the drag and lift coefficients in an equal-leg steel angle section using numerical simulation

Authors

  • Nelson Fundora Sautié Universidad Tecnológica de La Habana (CUJAE)
  • Leonardo Romero Monteiro Universidade do Estado de Santa Catarina (UDESC)
  • Edith Beatriz Camano Schettini Universidade Federal do Rio Grande do Sul (UFRGS)
  • Vivian Elena Parnás Universidad Tecnológica de la Habana José Antonio Echeverría (CUJAE)

DOI:

https://doi.org/10.14482/inde.38.1.511.8

Keywords:

Blockage ratio, CFD, Drag coefficient, Lift coefficient, OpenFOAM

Abstract

Telecommunications towers and other structures composed of steel sections are particularly susceptible to the action of wind loads that need to be quantified for a correct design of these sections. In the obtaining of wind loads, the determination of the drag (CD) and lift (CL) coefficients of the elements that compose the lattice, is vitally important because, from these coefficients, the separation and the permeability of the lattice is estimated the acting wind load. This paper studies the influence of the blockage ratio on the CD and CL coefficients in an equal-leg angle section, widely used in this kind of structure. To obtain these coefficients, computational fluid dynamics (CFD) was used through OpenFOAM software. As part of the experiment, three blockage ratios were simulated: 5 %, 10 % and 20%, using as a comparison pattern the CD and CL values provided by the NBR 6123 1988, NC 285 2003, NBCC 2005 and ASCE 7-10 2010 standards [1]-[4] . The best results were obtained for a 5 % blockage.

Author Biography

Nelson Fundora Sautié, Universidad Tecnológica de La Habana (CUJAE)

MSc. Ing. Civil

Profesor Asistente en la Universidad Tecnológica de la Habana José Antonio Echeverría CUJAE.

Facultad de Ingeniería Civil, Departamento de Estructuras

 

References

NBR 6123, «Forças devidas ao vento em edificações», Associação Brasileira de Normas Técnicas, 1988.

NC285, «Carga de Viento. Método de cálculo», Oficina Nacional de Normalización, 2003.

NBCC, «NBC 2005, Structural Commentaries (Part 4 of Division B)», Canadian Commission on Building and Fire Codes, 2005.

ASCE/SEI, «Minimum design loads for buildings and other structures», American Society of Civil Engineers, 2010.

Q. Zhou, H. Zhang, B. Ma, & Y. Huang, «Wind loads on transmission tower bodies under skew winds with both yaw and tilt angles», Journal of Wind Engineering & Industrial Aerodynamics, vol. 187, febrero, pp. 48-60, 2019.

S. Prud´homme, F. Legeron, & S. Langlois, «Calculation of wind forces on lattice structures made of round bars by a local approach», Engineering Structures, vol. 1, enero, 2018.

S. L. Beatove, & C. A. G. López, «Dispersión de partículas sólidas en flujos bifásicos turbulentos de interés industrial», Ingeniería & Desarrollo, vol. 17, pp. 87-114, 2005.

Tobias Holzmann, Mathematics, numerics, derivations and OpenFOAM(R), 4aed. Leoben: Holz-mann CFD, 2017.

F. Moukalled, L. Mangani, & M. Darwish, The finite volume method in computational fluid dynamics. An advanced introduction with OpenFOAM and Mathlab. Vol. 113. Londres: Springer International Publishing, 2016.

J. H. Ferziger, & M. Peric, Computational methods for fluid dynamics, 3aed. Nueva York: Springer-Verlag, 2002, p. 421.

E. G. F. S., I. Cuesta, & C. Salueña, «Flujo de Poiseuille y la cavidad con pared móvil calculado usando el método de la ecuación de lattice Boltzmann», Ingeniería & Desarrollo, vol. 24, pp. 1-22, 2008.

C. J. Greenshields, «OpenFOAM. User Guide», OpenFOAM Foundation Ltd., 2016. Disponible en: http://openfoam.org

B. R. Munson, T. H. Okiishi, W. W. Huebsch, & A. P. Rothmayer, Fundamentals of fluid mechanics, 7aed. 2013.

P. K. Kundu, & I. M. Cohen, Fluid mechanics, 4aed. Burlington, MA: Elsevier, 2008.

H. Z. Deng, H. J. Xu, C. Y. Duan, X. H. Jin, & Z. H. Wang, «Experimental and numerical study on the responses of a transmission tower to skew incident winds», Journal of Wind Engineering and Industrial Aerodynamics, n.o 2001, 2016.

M. Haines, & I. Taylor, «Numerical investigation of the flow field around low rise buildings due to a downburst event using large eddy simulation», Journal of Wind Engineering & Industrial Aerodynamics, vol. 172, octubre 2017, pp. 12-30, 2018.

S. Muggiasca, M. Belloli, & G. Diana, «Specific power input: comparison among rigid and flexible models», Journal of Wind Engineering & Industrial Aerodynamics, vol. 173, septiembre 2016, pp. 180-186, 2018

Y. A. Çengel, & J. M. Cimbala, Fluid mechanics. Fundamentals and aplication. McGraw-Hill Science/Engineering/Math, 2006.

K. Karthik, M. Vishnu, S. Vengadesan, & S. K. Bhattacharyya, «Optimization of bluff bodies for aerodynamic drag and sound reduction using CFD analysis», Journal of Wind Engineering & Industrial Aerodynamics, vol. 174, noviembre 2017, pp. 133-140, 2018.

J. Blessmann, Aerodinámica aplicada a engenharia civil. Faculdade de Economia do Vale do Rio dos Sinos, 1969.

J. Anthoine, & D. Olivari, «Wind-tunnel blockage effect on drag coefficient of circular cylinders», Wind and Structures, vol. 12, no. 6, pp. 541-551, 2009.

S. Prud´homme, F. Legeron, A. Laneville, & M. K. Tran, «Wind forces on single and shielded angle members in lattice structures», Journal of Wind Engineering and Industrial Aerodynamics, vol. 124, pp. 20-28, 2014.

Y. Cao, & T. Tamura, «Shear effects on flows past a square cylinder with rounded corners at 2.2 × 104», Journal of Wind Engineering & Industrial Aerodynamics, vol. 174, septiembre 2017, pp. 119-132, 2018.

Salome 7.8, «Salome : The Open Source Integration Platform for Numerical Simulation», 2016. Disponible en: https://docs.salome-platform.org/latest/gui/GEOM/index.htm

Published

2020-01-03

How to Cite

[1]
N. Fundora Sautié, L. Romero Monteiro, E. B. Camano Schettini, and V. E. Parnás, “Determination of the drag and lift coefficients in an equal-leg steel angle section using numerical simulation”, Ing. y Des., vol. 38, no. 1, pp. 66–84, Jan. 2020.