Multiple frequency continuous wave SDR radar implementation using GNU Radio

Authors

  • José de Jesús Rugeles Uribe Universidad Militar Nueva Granada - Grupo de Investigación en Seguridad y Sistemas de Comunicación (GISSIC)
  • Juan Carlos Martínez Quintero Universidad Militar Nueva Granada
  • Luis Eduardo Quibano Alarcón Universidad Militar Nueva Granada

DOI:

https://doi.org/10.14482/inde.38.1.621.38

Keywords:

GNU Radio, Low-cost radar, Multiple CW, Radar, SDR, Short range Radar

Abstract

Software Defined Radio (SDR) is a technology with recognition in Telecommunication industry because of its capacity of developing reconfigurable communication systems. This paper presents the implementation and field-testing evaluation for a low-cost radar system using the gr-radar toolbox created into the version 3.7.4 of GNU Radio. Tests allowed to measure distances and velocities of one target in movement. Velocity estimation errors were obtained with 1.8 % and 3.22 % in a round trip. Range estimation errors were also obtained with 1.56 % and 2.75 % in a round trip. Radar system was configured to transmit at 2.4 GHz with Multiple CW technique. The test scenario was the Nueva Granada Military University Campus in Colombia. The results are oriented toward use this tools for deepening on basic Radar principles with low-cost devices.

Author Biography

José de Jesús Rugeles Uribe, Universidad Militar Nueva Granada - Grupo de Investigación en Seguridad y Sistemas de Comunicación (GISSIC)

Ing. Electricista, Ingeniero Electrónico, Magister en Ingeniería Electrónica

 

Docente Investigador programa de Ingeniería en Telecomunicaciones

Facultad de Ingeniería - Universidad Militar Nueva Granada

 

 

 

References

H. Ma et al., «Performance analysis of joint radar and communication enabled vehicular ad hoc network», 2019, pp. 887-892. Doi: https://doi.org/10.1109/iccchina.2019.8855937

D. J. Daniels, & I. of E. Engineers, Ground penetrating radar. Londres: Institution of Electrical Engineers, 2004.

C. H. Díaz Medina, R. Bustamante Miller, L. F. Giraldo Trujillo, & J. F. Vargas Buitrago, «Ana?lisis del desempen?o de los sistemas GPR “Ground Penetrating Radar”, en el contexto del desminado humanitario en Colombia», 2017. Disponible en: http://biblioteca.uniandes.edu.co/acepto201699.php?id=13553.pdf

H. Sierra Coley, «Análisis de la detección de minas mediante la técnica GPR “Ground Penetrating Radar”», tesis de maestría, 2017. Disponible en: http://biblioteca.uniandes.edu.co/acepto201699.php?id=11424.pdf

L. Piotrowsky, T. Jaeschke, S. Kueppers, J. Siska, & N. Pohl, «Enabling High Accuracy distance measurements with FMCW radar sensors», IEEE Trans. Microw. Theory Tech., pp. 1-12, septiembre, 2019. Doi: https://doi.org/10.1109/tmtt.2019.2930504

Ultra-Wideband Radio Technologies for Communications, «Localization and Sensor Applications», InTech, 2013. doi:https://doi.org/10.5772/2648

N. Smitha, D. R. Ullas Bharadwaj, S. Abilash, S. N. Sridhara, & V. Singh, «Kirchhoff and F-K migration to focus ground penetrating radar images», Int. J. Geo-Engineering, vol. 7, n.o 1, p. 4, 2016. Doi: https://doi.org/10.1186/s40703-016-0019-6

C. Özdemir, ?. Demirci, E. Yi?it, & B. Yilmaz, «A review on migration methods in b-scan ground penetrating radar imaging», Mathematical Problems in Engineering, vol. 2014, 2014. Doi: http://dx.doi.org/10.1155/2014/280738

G. L. Charvat, A. J. Fenn, & B. T. Perry, «The MIT IAP radar course: build a small radar system capable of sensing range, doppler, and synthetic aperture (SAR) imaging», inIEEENational Radar Conference-Proceedings, 2012, pp. 0138-0144. Doi: https://doi.org/10.1109/RADAR.2012.6212126

J. Mitola, «Software radios: Survey, critical evaluation and future directions», IEEE Aerosp. Electron. Syst. Mag., vol. 8, n.o 4, pp. 25-36, abril, 1993. Doi: https://doi.org/10.1109/62.210638

«Definiciones de sistema radioeléctrico determinado por programas informáticos (RDI) y sistema radioeléctrico cognoscitivo (SRC)», 2019. Disponible en: https://www.itu.int/pub/r-rep-sm.2152/es

P. Pawelczak, K. Nolan, L. Doyle, S. Oh, & D. Cabric, «Cognitive radio: ten years of experimentation and development», IEEE Commun. Mag., vol. 49, n.o 3, pp. 90-100, marzo, 2011. Doi: https://doi.org/10.1109/MCOM.2011.5723805

J. Mitola, P. Marshall, K. Chen, M. Mueck, & Z. Zvonar, «Software defined radio-20 years later: Part 1 [Guest Editorial]», IEEE Commun. Mag., vol. 53, n.o 9, pp. 22-23, 2015. Doi: https://doi.org/10.1109/MCOM.2015.7263341

J. Hao, T. Huang, Z. D. Chen, H. Zhao, & J. Li, «A GNU radio based FMCW radar with a simple frequency correction technique for accurate indoor localization applications», en 2018 IEEE MTT-S Int. Wirel. Symp. IWS 2018-Proc., pp. 1-4, 2018. Doi: https://doi.org/10.1109/IEEE-IWS.2018.8400973

Kafedziski, V., & Pecov, S. (2017), «Implementation of a high resolution stepped frequency radar on a USRP», en 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 Proceeding, octubre, 2017, 236-239. Doi: https://doi.org/10.1109/TELSKS.2017.8246271

T. W. Mathumo, T. G. Swart, & R. W. Focke, «Implementation of a GNU radio and python FMCW radar toolkit», 2017 IEEE Africon Sci. Technol. Innov. Africa, Africon, 2017, pp. 585-590, 2017. Doi: https://doi.org/10.1109/AFRCON.2017.8095547

S. Sundaresan, C. Anjana, T. Zacharia, & R. Gandhiraj, «Real time implementation of FMCW radar for target detection using GNU radio and USRP», en 2015 International Conference on Communication and Signal Processing, ICCSP 2015, 2015, pp. 1530-1534. Doi: https://doi.org/10.1109/ICCSP.2015.7322772

A. Prabaswara, A. Munir, & A. B. Suksmono, «GNU Radio based software-defined FMCW radar for weather surveillance application», en Proceedings of 2011 6th International Conference on Telecommunication Systems, Services, and Applications, TSSA 2011, 2011, pp. 227-230. Doi: https://doi.org/10.1109/TSSA.2011.6095440

M. Alam, K. Jamil, Z. O. Alhekail, & S. Al-Humaidi, «A multi-band multi-beam software-defined passive radar Part II: Signal processing», en IET Conference Publications, 2012, vol. 2012, n.o 603 CP. Doi: https://doi.org/10.1049/cp.2012.1582

B. Tan, K. Woodbridge, & K. Chetty, «A real-time high resolution passive WiFi Doppler-radar and its applications», en 2014 International Radar Conference, Radar 2014, 2014. Doi: https://doi.org/10.1109/RADAR.2014.7060359

«GNU Radio-The Free & Open Source Radio Ecosystem», GNU Radio. Disponible en: https://www.gnuradio.org/

«GNU Radio Radar Toolbox-Page 2-gr-radar: GNU Radio Radar Toolbox», 2019. Disponible en: https://grradar.wordpress.com/page/2/

J. Zhang, «Basic gait analysis based on continuous wave radar» Gait and Posture, vol. 36, n.o 4. pp. 667-671, septiembre, 2012. Doi: https://doi.org/10.1016/j.gaitpost.2012.04.020

S. Pal, «FMCW-Radar Design» IETE J. Res., vol. 65, n.o 4, pp. 576-577, julio, 2019. Doi: https://doi.org/10.1080/03772063.2019.1615392

Mao-Yanfei, «FMCW radar receiver front-end design», tesis de maestría, Dept. Electronic Engineering, Delft University of Technology, Países Bajos, 2009. Disponible en: https://repository.tudelft.nl/islandora/object/uuid:ee554cc0-a7e6-49ee-939e-312bcef3d674/datastream/OBJ/download

B. R. Mahafza, Radar systems analysis and design using MATLAB, 3ª ed. CRC Press, 2016. Doi: https://doi.org/10.1201/b14904

«kit-cel/gr-radar: GNU Radio Radar Toolbox». Disponible en: https://github.com/kit-cel/gr-radar

A. Gorji Daronkolaeii, M. B. Menhaj, & A. Doostmohammadi, «Multiple target tracking with a 2-D radar using the JPDAF algorithm and combined motion model», AUT J. Model. Simul., vol. 41, n.o 2, pp. 43-51, noviembre, 2009. Doi: https://doi.org/10.22060/MISCJ.2009.239

«Brochures and Data Sheets for Product HF907|Rohde & Schwarz». Disponible en: https://www.rohde-schwarz.com/hu/brochure-datasheet/hf907/

Published

2020-01-03

How to Cite

[1]
J. de J. Rugeles Uribe, J. C. Martínez Quintero, and L. E. Quibano Alarcón, “Multiple frequency continuous wave SDR radar implementation using GNU Radio”, Ing. y Des., vol. 38, no. 1, pp. 224–242, Jan. 2020.