Evaluation of the thermal performance of eco-friendly bricks fabricated with incorporation of mullite residues
DOI:
https://doi.org/10.14482/inde.39.1.624.181Keywords:
Ceramic fibre, Clay, Direct flame exposure, Eco-friendly bricks, Recycling, RefractoryAbstract
The aim of this research was the production of clay-brick, from red clay, waste from a disused electric furnace, reinforced with ceramic fibers, to obtain a ceramic material with refractory characteristics. The clay/waste particle proportion was 50:50 by weight, and the incorporation of fiber was 10% and 20% by volume, to obtain a ceramic by sintering at 1000°C, for 2 hours. The designed materials were characterized by X-ray diffraction, the flexural and compressive strength, density, porosity, and absorption were determined. The thermal performance was also verified by direct exposure to 1000°C flame. The results showed that as ceramic fiber was incorporated, the compressive strength decreased by 17.3% for AF10 and 17.0% for AF20. The flexural strength values were at 3.4 MPa. The coefficient of thermal conductivity was 0.5322 W/m.K, and, during direct flame exposure, the samples achieved a thermal gradient of ~ 700 °C for samples 2 cm thick. The mineralogical phases obtained for the bricks were mullite, corundum, and cordierite, which are considered refractory.
References
S. M. S. Kazmi, M. J. Munir, Y. F. Wu, A. Hanif y I. Patnaikuni, “Thermal performance evaluation of eco-friendly bricks incorporating waste glass sludge”, J. Clean. Prod., vol. 172, pp. 1867-1880, en. 2018. https://doi.org/10.1016/j.jclepro.2017.11.255
J. D. Santos Amado, P. Y. Malagón Villafrades y E. M. Córdoba Tuta, “Characterization of clays and preparation of ceramic pastes for the manufacture of roofing tiles and bricks in the region of Barichara, Santander”, Dyna rev.fac.nac.minas, vol. 78, no. 167, pp. 50-58, jul.-sept. 2011 [En línea]. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532011.000300006
S. Neves Monteiro y C. M. FontesVieirab, “On the production of fired clay bricks from waste materials: A critical update”, Constr. Build. Mater., vol. 68, pp. 599-610, oct. 2014. https://doi.org/10.1016/j.conbuildmat.2014.07.006
T. Çiçek y Y. Çinçin, “Use of fly ash in production of light-weight building bricks”, Constr. Build. Mater., vol. 94, pp. 521-527, sept. 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.029
S. M. S. Kazmi, S. Abbas, M. J. Munir y A. Khitab, “Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks”, J. Build. Eng., vol. 7, pp. 372-378, sept. 2016. https://doi.org/10.1016/j.jobe.2016.08.001
L. Aouba, C. Bories, M. Coutand, B. Perrin y H. Lemercier, “Properties of fired clay bricks with incorporated biomasses: Cases of Olive Stone Flour and Wheat Straw residues”, Constr. Build. Mater., vol. 102, pp. 7-13, en. 2016. https://doi.org/10.1016/j.
conbuildmat.2015.10.040
M. Sutcu y S. Akkurt, “The use of recycled paper processing residues in making porous brick with reduced thermal conductivity”, Ceram. Int., vol. 35, no. 7, pp. 2625-2631, sept. 2009. https://doi.org/10.1016/j.ceramint.2009.02.027
H. Fang, J. D. Smith y K. D. Peaslee, “Study of spent refractory waste recycling from metal manufacturers in Missouri”, Resour. Conserv. Recycl., vol. 25, no. 2, pp. 111-124, febr. 1999. https://doi.org/10.1016/S0921-3449(98)00059-7
C. Sadik, I.-E. El Amrani y A. Albizane, “Processing and characterization of alumina-mullite ceramics”, J. Asian Ceram. Soc., vol. 2, no. 4, pp. 310-316, abr. 2014. https://doi.org/10.1016/j.jascer.2014.07.006
C. Sadik, I.-E. El Amrani y A. Albizane, “Effect of andalusite rich schist grain size and the addition of metallic aluminum powder on the properties of silica-alumina refractory”, J. Asian Ceram. Soc., vol. 1, no. 4, pp. 351-355, dic. 2013. https://doi.org/10.1016/j.jascer.2013.10.002
M. A. Villaquirán-Caicedo, R. Mejía de Gutiérrez y N. C. Gallego, “A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature”, Mater. Construcción, vol. 67, no. 326, pp. 1-13, 2017. https://doi.org/10.3989/mc.2017.02316
M. A. Villaquirán-Caicedo y R. Mejía de Gutiérrez, “Mechanical and microstructural analysis of geopolymer composites based on metakaolin and recycled silica”, J. Am. Ceram. Soc., vol. 102, pp. 3653-3662, nov. 2019. https://doi.org/10.1111/jace.16208
S. Idarraga-Giraldo, S. Figueroa-Calle y F. A. Vargas-Bermúdez, “Utilización de chamota posconsumo en la formulación de una pasta refractaria como sustitución de la alúmina”, Rev. Ión, vol. 33, no. 1, pp. 39-45, 2020. DOI:10.18273/revion
J. Sánchez Molina, J. A. Orozco Cacique y L. Peñaloza Isidro, “Evaluation of mixtures of clay for the manufature of refractory bricks used for the conversion technology of used ovens”, Rev. Invest. Univ. Quindío, vol. 26, no. 1, pp. 59-66, 2014 [En línea]. Disponible en: shorturl.at/knKN7
P. Muñoz Velasco, M. P. Morales Ortiz, M. A. Mendívil Giró y L. Muñoz Velasco, “Fired clay bricks manufactured by adding wastes as sustainable construction material: a review”, Constr. Build. Mater., vol. 63, pp. 97-107, jul. 2014.
Icontec, “NTC 4205. Unidades de mampostería de arcilla cocida. Ladrillos y bloques cerámicos”, Bogotá, p. 28, 2019.
Icontec, “NTC 773. Clasificación de ladrillos refractarios de arcilla refractaria”, Bogotá, p. 11, 2018.
I. B. Topçu y B. I?ikda?, “Manufacture of high heat conductivity resistant clay bricks containing perlite”, Build. Environ., vol. 42, no. 10, pp. 3540-3546, oct. 2007. https://doi.org/10.1016/j.buildenv.2006.10.016
N. Ariyajinno y S. Thiansem, “Effect of firing temperature on sintering of cordierite-mullite refractories from raw materials and Narathiwat clay in Thailand”, Mater. Today Proc., vol. 5, no. 6, Part 1, pp. 14036-14040, 2018. https://doi.org/10.1016/j.matpr.2018.02.057
J. Morales Güeto, Tecnología de los materiales cerámicos. Madrid: Díaz de Santos, 2005.
S. K. Singh, S. Kulkarni, V. Kumar y P. Vashistha, “Sustainable utilization of deinking paper mill sludge for the manufacture of building bricks”, J. Clean. Prod., vol. 204, pp. 321-333, dic. 2018. https://doi.org/10.1016/j.jclepro.2018.09.028
D. Measurements, A. S. Gravity y B. Density, Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. West Conshohocken: ASTM, 2020.
Icontec, “NTC 744. Ladrillos refractarios de semisílice, especificaciones”. Bogotá, p. 5, 2021.
R. Taurino, D. Ferretti, L. Cattani, F. Bozzoli y F. Bondioli, “Lightweight clay bricks manufactured by using locally available wine industry waste”, J. Build. Eng., vol. 26, nov. 2019. https://doi.org/10.1016/j.jobe.2019.100892
P. Muñoz, M. P. Morales, M. A. Mendívilc, M. C. Juárez y L. Muñoz, “Using of waste pomace from winery industry to improve thermal insulation of fired clay bricks: eco-friendly way of building construction”, Constr. Build. Mater., vol. 71, pp. 181-187, nov. 2014. https://doi.org/10.1016/j.conbuildmat.2014.08.027
G. Peña Rodríguez, J. Peña Quintero y M. Gómez Tovar, “Determinación experimental de la conductividad térmica efectiva en bloques extinguidos de arcilla roja”, Rev. Cienc. en Desarro., vol. 5, no. 1, pp. 15-20, febr. 2014. https://doi.org/10.19053/01217488.3227
M. J. Munir, S. M. S. Kazmi, Y. F. Wu, A. Hanif y M. U. A. Khan, “Thermally efficient fired clay bricks incorporating waste marble sludge: an industrial-scale study”, J. Clean. Prod., vol. 174, pp. 1122-1135, febr. 2018. https://doi.org/10.1016/j.jclepro.2017.11.060
L. Gong, Y. Wang, X. Cheng, R. Zhang y H. Zhang, “Thermal conductivity of highly porous mullite materials”, Int. J. Heat Mass Transf., vol. 67, pp. 253-259, dic. 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.008
D. Vásquez-Molina, J. M. Mejía-Arcila y R. Mejía de Gutiérrez, “Mechanical and thermal performance of a geopolymeric and hybrid material based on fly ash”, Dyna rev.fac.nac.minas, vol. 83, no. 195, pp. 216-223, 2016. https://doi.org/10.15446/dyna.v83n195.50824