Stiffness estimation of unbound marginal granular materials through dynamic CBR test
DOI:
https://doi.org/10.14482/inde.40.01.621.992Keywords:
dynamic CBR test, equivalent resilient modulus, marginal granular material, unbound granular material, resilient modulus, stiffness, pavementsAbstract
Laboratory evaluation of unbound granular materials response (e.g., paving granular subbases and bases) subjected to dynamic load is limited in Colombia. This state of the practice is related, among other aspects, to the fact that the dynamic triaxial equipment required for its determination is expensive, and the test protocols are complex. In the last decade, work has been carried out to develop the dynamic CBR test (dCBR) that employs the CBR equipment but modifies the testing protocol applied in the CBR test. This research proposes the basis of a new protocol for the dCBR test to determine the stiffness of granular materials (i.e., equivalent resilient modulus) by applying seven steps repeated load, where each step is defined by a target strain. The study included two marginal granular materials (MGMs) with high plasticity indexes. The results suggest that the dCBR test protocol proposed allows estimating the equivalent resilient modulus. In addition, the proposed protocol differentiates the effect of the plasticity index on the stiffness of the MGM (i.e., reduction of equivalent resilient modulus as the plasticity index increases). Therefore, it is proposed to extend the range of materials characterized to validate the preliminary results presented and inquire about a possible correlation between the values of resilient modulus and equivalent resilient modulus.
References
C. A. Murillo, “Desafíos Para El Desarrollo De La Red Vial Terciaria En El Posconflicto,” Rev. Ing., no. 45, pp. 32–38, 2017, doi: 10.16924/revinge.45.5.
INSTITUTO NACIONAL DE VÍAS (INVIAS), “Estado de la red vial criterio técnico segundo semestre 2021,” Bogotá D.C., 2021 [Online]. Available: https://www.invias.gov.co/index.php/informacion-institucional/2-principal/57-estado-de-la-red-vial
L. A. Teixeira Brito, “Design methods for low volume roads,” The University of Nottingham, 2011.
B. Andrews, Guide to pavement technology part 6: Unsealed pavements, 1st ed. Sydney: Austroads Ltd., 2009.
H. B. Seed, C. K. Chan, and C. E. Lee, “Resilience characteristics of subgrade soils and their relation to fatigue failures in asphalt pavements,” in International Conference on the Structural Design of Asphalt Pavements, 1962.
A. Araya, A. Molenaar, and L. Houben, “A realistic method of characterizing granular materials for low-cost road pavements,” Proc., 11th Int. Conf. Asph. Pavements (ISAP 2010), 2010.
A. A. Araya, “Characterization of Unbound Granular Materials for Pavements,” Delft University of Technology, 2011.
A. Araya, A. Molenaar, and L. Houben, “Characterization of unbound granular materials using repeated load CBR and triaxial testing,” in Paving Materials and Pavement Analysis, 2010, vol. 1, no. I, pp. 355–363, doi: 10.1061/41104(377)44 [Online]. Available: http://ascelibrary.org/doi/10.1061/41104%28377%2944
A. A. Araya, “Simplified characterization techniques for (sub) tropical base materials and modelling,” Int. J. Comput. Methods Exp. Meas., vol. 2, no. 1, pp. 92–106, 2014, doi: 10.2495/CMEM-V2-N1-92-106.
W. Sas, A. Gluchowski, K. Gabry?, and A. Szyma?ski, “Application of cyclic CBR test for the estimation of resilient modulus in the pavement construction,” in ICE Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, 2015, no. ISBN 978-0-7277-6067-8, pp. 793–798, doi: 10.1680/ecsmge.60678 [Online]. Available: https://www.icevirtuallibrary.com/doi/abs/10.1680/ecsmge.60678
W. Sas, A. Gluchowski, and A. Szymanski, “The geotechnical properties of recycled concrete aggregate with addition of rubber chips during cyclic loading,” Int. J. GEOMATE, vol. 12, no. 29, pp. 25–32, 2017, doi: 10.21660/2017.29.5216.
S. Hao and T. Pabst, “Determination of resilient behavior of crushed waste rock using cyclic load CBR test,” in GeoVirtual 2020, 2020, pp. 1–6.
S. Hao and T. Pabst, “Estimation of resilient behavior of crushed waste rocks using repeated load CBR tests,” Transp. Geotech., vol. 28, no. November 2020, pp. 1–13, 2021, doi: 10.1016/j.trgeo.2021.100525. [Online]. Available: https://doi.org/10.1016/j.trgeo.2021.100525
A. Salmi, L. Bousshine, and K. Lahlou, “A new model of equivalent modulus derived from repeated load CBR test,” Int. J. Eng. Trans. A Basics, vol. 33, no. 7, pp. 1321–1330, 2020, doi: 10.5829/ije.2020.33.07a.19.
W. Sas, A. Gluchowski, and A. Szymanski, “Behavior of recycled concrete aggregate improved with lime addition during cyclic loading,” Int. J. GEOMATE, vol. 10, no. 1, pp. 1662–1669, 2016, doi: 10.21660/2016.19.4250.
H. Haghighi, A. Arulrajah, A. Mohammadinia, and S. Horpibulsuk, “A new approach for determining resilient moduli of marginal pavement base materials using the staged repeated load CBR test method,” Road Mater. Pavement Des., vol. 19, no. 8, pp. 1848–1867, 2018, doi: 10.1080/14680629.2017.1352532. [Online]. Available: https://doi.org/14680629.2017.1352532
A. N. Abid, A. O. Salih, and E. A. Nawaf, “The Influence of Fines Content on the Mechanical Properties of Aggregate Subbase Course Material for Highway Construction using Repeated Load CBR Test,” Al-Nahrain J. Eng. Sci., vol. 20, no. 3, pp. 615–624, 2017.
A. A. A. Molenaar, “Characterization of some tropical soils for road pavements,” Transp. Res. Rec., vol. 2, no. 1989, pp. 186–193, 2007, doi: 10.3141/1989-63.
S. S. Nagula, J. M. Krishnan, and R. G. Robinson, “Use of repeated load CBR test to characterize pavement granular materials,” in Functional Pavement Design - Proceedings of the 4th Chinese-European Workshop on Functional Pavement Design, CEW 2016, 2016, 1st ed., no. June, pp. 1011–1018, doi: 10.1201/9781315643274 [Online]. Available: https://www.taylorfrancis.com/books/9781317285526
S. S. Nagula, R. G. Robinson, and J. M. Krishnan, “Mechanical characterization of pavement granular materials using hardening soil model,” Int. J. Geomech., vol. 18, no. 12, pp. 1–13, 2018, doi: 10.1061/(asce)gm.1943-5622.0001291.
A. Salmi, L. Bousshine, and K. Lahlou, “Two unbound granular materials stiffness analysis with staged repeated load CBR test,” MATEC Web Conf., vol. 286, pp. 1–3, Aug. 2019, doi: 10.1051/matecconf/201928606003. [Online]. Available: https://www.matec-conferences.org/10.1051/matecconf/201928606003
A. Mehrpazhouh, S. N. Moghadas Tafreshi, and M. Mirzababaei, “Impact of repeated loading on mechanical response of a reinforced sand,” J. Rock Mech. Geotech. Eng., vol. 11, no. 4, pp. 804–814, 2019, doi: 10.1016/j.jrmge.2018.12.013. [Online]. Available: https://doi.org/10.1016/j.jrmge.2018.12.013
Instituto Nacional de Vías, Especificaciones generales de construcción de carreteras y normas de ensayo para carreteras. Bogotá D.C.: Ministerio de Transporte, 2013.
G. Cerni and S. Camilli, “Comparative analysis of gyratory and proctor compaction processes of unbound granular materials,” Road Mater. Pavement Des., vol. 12, no. 2, pp. 397–421, 2011, doi: 10.1080/14680629.2011.9695251.
A. E. Alvarez, L. V Espinosa, P. A. Ortiz, M. D. Hurtado, L. E. Cotes, and Y. M. López, “Evaluación de la degradación por compactación de materiales granulares tipo subbase,” Rev. EIA, vol. 16, no. 31, pp. 13–25, 2019, doi: 10.24050/reia.v16i31.746.
J. F. Camacho Tauta, O. J. Reyes Ortiz, and D. F. Méndez González, “Ensayo de compactación giratoria en suelos como alternativa al ensayo de compactación proctor,” Cienc. e Ing. Neogranadina, vol. 17, no. 2, pp. 67–81, 2007.
M. J. Browne, “Feasibility of using a gyratory compactor to determine compaction characteristics of soil,” Montana State University, 2006.
N. Pérez García, P. Garnica Anguas, D. Fredlund, M. Reyes Rodríguez, H. García Cruz, and R. Pérez Luis, “Compaction and mechanical properties of soils compacted in the gyratory compactor,” Infraestruct. Vial, vol. 18, no. 31, pp. 20–29, 2016.
M. Pasetto and N. Baldo, “Comparative analysis of compaction procedures of unbound traditional and non-conventional materials,” in Pavements Unbound, 2004, no. 1, pp. 65–73.
R. L. Arabali, Poura; Ick Lee, Sang; Sebesta, Stephen; Sakhaeifar, Maryam S.; Lytton, “Application of Superpave Gyratory Compactor for Laboratory Compaction of Unbound Granular Materials,” in International Conference on Transportation and Development 2018, 2018, pp. 359–369 [Online]. Available: http://www.asce-ictd.org/
M. Y. Fattah, M. M. Hilal, and H. B. Flyeh, “Effect of fine material on compaction characteristics of subbase material using the Superpave Gyratory Compactor,” Int. J. Civ. Eng. Technol., vol. 7, no. 5, pp. 466–476, 2016.
S. Thyagarajan, L. Tashman, E. Masad, and F. Bayomy, “The heterogeneity and mechanical response of hot mix asphalt laboratory specimens,” Int. J. Pavement Eng., vol. 11, no. 2, pp. 107–121, 2010, doi: 10.1080/10298430902730521.
K. P. George, “Prediction of Resilient Modulus From Soil Index Properties. Report No. FHWA/MS-DOT-RD-04-172,” Mississippi, 2004.
R. Sánchez González, “Confiabilidad en el diseño estructural de pavimentos,” Universidad de los Andes, 2003.
B. Caicedo, O. Coronado, J. M. Fleureau, and A. Gomez-Correia, “Resilient Behaviour of non Standard Unbound Granular Materials,” Road Mater. Pavement Des., vol. 10, no. No. 2, pp. 287–312, 2009, doi: 10.1080/14680629.2009.9690196.
Y. Xiao, E. Tutumluer, Y. Qian, and J. A. Siekmeier, “Gradation Effects Influencing Mechanical Properties of Aggregate Base–Granular Subbase Materials in Minnesota,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2267, no. 1, pp. 14–26, 2012, doi: 10.3141/2267-02. [Online]. Available: http://journals.sagepub.com/doi/10.3141/2267-02
G. Cerni, A. Corradini, E. Pasquini, and F. Cardone, “Resilient behaviour of unbound granular materials through repeated load triaxial test: influence of the conditioning stress,” Road Mater. Pavement Des., vol. 16, no. 1, pp. 70–88, 2015, doi: 10.1080/14680629.2014.964294.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Científica Ingeniería y Desarrollo.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.