Validation of results through Montecarlo algorithm in procedure temperature calibration

Authors

DOI:

https://doi.org/10.14482/inde.41.01.611.072

Keywords:

Uncertainty estimation, uncertainty propagation, Montecarlo simulation, validation

Abstract

Conformity assessment bodies (OEC) accredited by ISO/IEC 17025 perform validation of results, in order to confirm by technical competence review the provision of objective evidence, assessing compliance with the necessary regulatory requirements for a specific application [1]. The Guide to the Expression of Uncertainty in Measurement (GUM) provides two alternatives for evaluating and expressing measurement uncertainty. The first is a methodology based on a linear model of propagation of uncertainty, and the second is an alternative method of propagation by Monte Carlo simulation (MCM) [2]. Although the first alternative is the most used by OEC due to its simplicity, in this work it is proposed to use the second alternative based on MCM as a method of validating results. For this purpose, an implementation guide for the algorithms described in Supplement 1 of the GUM is presented, in the calibration procedure for temperature measurement equipment based on the technical standard Thermometers, contact, direct reading: Calibration (NT VVS 103). The results obtained show an acceptable numerical tolerance, verifying the effectiveness of the proposed tool in the use of the GUM methodology validated through the procedures described in Supplement 1.

References

"Requisitos generales para la competencia de los laboratorios de ensayo y calibración", ISO/IEC, 2017.

P. M. Harris y M. G. Cox, "On a Monte Carlo method for measurement uncertainty evaluation and its implementation", Metrologia, vol. 51, nº. 4, p. S176, 2014.

J. Méndez Arias y L. Ramíez Varas, "Validación de la estimación de incertidumbre en la calibración de matraces para el método de sustitución simple sin masa de sensibilidad mediante el Método de Monte Carlo", Ingeniería, vol. 20, nº. 1-2, pp. 183-193, 2010.

F. Khodabocus y K. Balgobin, «Implementation and practical benefits of ISO/IEC 17025: 2005 in a testing laboratory.,» University of Mauritius Research Journal, vol. 17, pp. 27-60, 2011.

K. Gromczak, A. G?ska, K. Ostrowska, J. S?adek, W. Harmatys, P. G?ska y M. Kowalski, "Validation model for coordinate measuring methods based on the concept of statistical consistency control", Precision Engineering, vol. 45, pp. 414-422, 2016.

D. Kurniadi y E. Amrina, "Designing ISO/IEC 17025: 2017–Based Laboratory Quality Manual: A Case of Laboratory of Environmental Engineering in Andalas University", International Journal of Progressive Sciences and Technologies, vol. 19, nº. 1, pp. 14-21, 2020.

G. Mahmoud y R. Hegazy, "Comparison of GUM and Monte Carlo methods for the uncertainty estimation in hardness measurements", International Journal of Metrology and Quality Engineering, vol. 8, p. 14, 2017.

X.-l. Wen, Y. B. Zhao, D. X. Wang y J. Pan, "Adaptive Monte Carlo and GUM methods for the evaluation of measurement uncertainty of cylindricity error", Precision Engineering, vol. 37, nº. 4, pp. 856-864, 2013.

K. Shimaoka, M. Kinoshita, K. Fujii y T. Tosaka,"Evaluation of measurement data-supplement 1 to the guide to expression of uncertainty in measurement-propagation of distributions using a monte carlo method", JCGM, p. 101, 2008.

O. Seven y T. Supportedthe, "Guide to the Expression of Uncertainty in Measurement", 1995.

M. G. Cox y B. R. Siebert, "The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty", Metrologia, vol. 43, nº. 4, p. S178, 2006.

J. C. Damasceno y P. R. Couto, "Methods for Evaluation of Measurement Uncertainty", Metrology IntechOpen, pp. 9-28, 2018.

Y. P. Paisan y J. P. Moret, "Determinación de la incertidumbre de medición por el método de Monte Carlo en los procesos de manufactura", Tecnología Química, vol. 28, nº. 3, pp. 56-62, 2008.

M. A. Azpurua, C. Tremola y E. Paez, "Comparison of the GUM and Monte Carlo methods for the uncertainty estimation in electromagnetic compatibility testing", Progress In Electromagnetics Research, vol. 34, pp. 125-144, 2011.

A. Jalid, "Comparison of the GUM and Monte Carlo methods on the flatness uncertainty estimation in coordinate measuring machine", International Journal of Metrology and Quality Engineering, vol. 7, nº. 3, p. 302, 2016.

L. O. Becerra y L. M. Peña, "Evaluación del desempeño en los ensayos de aptitud de los laboratorios de calibración y el impacto en sus CMCs", Simposio de Metrología 2012.

NIST, "Uncertainty Machine". [En línea]. Disponible en: https://uncertainty.nist.gov/. [Último acceso: 28 - 01 - 2022].

Published

2023-01-06

How to Cite

[1]
A. D. Gil Miranda, W. Serna Serna, and L. M. Zuleta Gilon, “Validation of results through Montecarlo algorithm in procedure temperature calibration”, Ing. y Des., vol. 41, no. 1, pp. 6–27, Jan. 2023.