Mechanical and Hydraulic performance of pervious concrete pavements: Experimental evaluation
DOI:
https://doi.org/10.14482/inde.41.02.025.748Keywords:
mechanical properties, permeability, pervious concrete, pervious pavements, porosityAbstract
Pervious pavements emerge as an alternative for good management of surface runoff, providing the opportunity to quickly and efficiently reduce the potential for flooding and reuse rainwater. However, the mechanical and hydraulic performance of the material have been extensively evaluated at the laboratory level, leaving aside how the material will behave in the field and how its exposure will accelerate the loss of its hydraulic properties (clogging). In this sense, this research evaluated the mechanical and hydraulic performance of permeable concrete pavements in an experimental field that simulates the working conditions of the material, where properties such as compressive strength, tensile strength, porosity, and permeability were evaluated, as well as the loss of hydraulic efficiency due to clogging. This is to increase the knowledge of the material to provide construction and quality control guidelines that guarantee the correct functioning of this type of pavement, considering its great contribution to sustainability.
References
R. Zhong, Z. Leng, and C. sun Poon, “Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review,” Constr. Build. Mater., vol. 183, pp. 544–553, 2018, doi: 10.1016/j.conbuildmat.2018.06.131.
A. A. Busari, A. Adeboje, A. E. Modupe, O. G. Fadugba, R. Loto, and E. Adeyanju, “Pervious Pavements for Storm Water Control,” IOP Conf. Ser. Earth Environ. Sci., vol. 665, no. 1, 2021, doi: 10.1088/1755-1315/665/1/012027.
K. S. Elango, R. Gopi, R. Saravanakumar, V. Rajeshkumar, D. Vivek, and S. V. Raman, “Properties of pervious concrete - A state of the art review,” Mater. Today Proc., vol. 45, pp. 2422–2425, 2021, doi: 10.1016/j.matpr.2020.10.839.
L. J. Anjos Viana, Ester; Andrade Mota, G. F. . B. Sandoval, and K. D. B. de Souza Risson, “DESEMPEÑO MECÁNICO E HIDRÁULICO DE PAVIMENTOS PERMEABLES DE CONCRETO: EVALUACIÓN EXPERIMENTAL,” in XIV CONGRESO COLOMBIANO DE TRANSPORTE Y TRÁNSITO CCTT 2022: MEMORIAS, 2022, pp. 161–168, [Online]. Available: https://www.uptc.edu.co/sitio/portal/sitios/eve_mac/22_08_evmacr_001/index.html.
P. D. Tennis, M. L. Leming, and D. J. Akers, Pervious Concrete Pavements. 2004.
S. Kant Sahdeo, G. D. Ransinchung, K. L. Rahul, and S. Debbarma, “Effect of mix proportion on the structural and functional properties of pervious concrete paving mixtures,” Constr. Build. Mater., vol. 255, p. 119260, 2020, doi: 10.1016/j.conbuildmat.2020.119260.
A. K. Chandrappa and K. P. Biligiri, “Pervious concrete as a sustainable pavement material-Research findings and future prospects: A state-of-the-art review,” Constr. Build. Mater., vol. 111, pp. 262–274, 2016, doi: 10.1016/j.conbuildmat.2016.02.054.
A. NBR 7211, “NBR 7211 - Agregados para concreto – Especificação (Aggregates for concrete – Specification),” Assoc. Bras. Normas Técnicas, p. 16, 2019.
G. F. B. . Sandoval, I. Galobardes, R. S. . Teixeira, and B. M. . Toralles, “Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes,” Case Stud. Constr. Mater., vol. 7, no. May, pp. 317–328, Dec. 2017, doi: 10.1016/j.cscm.2017.09.001.
ABNT, “NBR 16889 - Determinação da consistência pelo abatimento do tronco do tronco de cone.” Rio de Janeiro, p. 5, 2020.
ABNT NBR 16416, Pavimentos permeáveis de concreto - Requisitos e procedimentos. 2015.
G. Sandoval, I. Galobardes, A. Campos, and B. M. Toralles, “Assessing the phenomenon of clogging of pervious concrete (Pc): Experimental test and model proposition,” J. Build. Eng., vol. 29, no. January, May 2020, doi: 10.1016/j.jobe.2020.101203.
ASTM, “ASTM C1701 Standard test Method for infiltration rate of in place pervious concrete,” 2009.
G. F. B. . Sandoval, I. Galobardes, N. Schwantes-Cezario, A. Campos, and B. M. Toralles, “Correlation between permeability and porosity for pervious concrete (PC),” DYNA, vol. 86, no. 209, pp. 151–159, Apr. 2019, doi: 10.15446/dyna.v86n209.77613.
A. Kia, H. S. Wong, C. R. Cheeseman, and C. R. C. Alalea Kia, Hong S. Wong, “Clogging in permeable concrete: A review,” J. Environ. Manage., vol. 193, no. May, pp. 221–233, 2017, doi: 10.1016/j.jenvman.2017.02.018.
K. D. B. De Souza Risson, G. F. B. Sandoval, F. S. Cofani, M. Camargo, and B. M. Toralles, “MOLDING PROCEDURE FOR PERVIOUS CONCRETE SPECIMENS BY DENSITY CONTROL,” Case Stud. Constr. Mater., vol. 15, no. July, 2021, doi: 10.1016/j.cscm.2021.e00619.
R. Batezini, “Estudo preliminar de concretos permeáveis como revestimentos de pavimentos para áreas de veículos leves,” Mestr., p. 133, 2013.
ABNT, “ABNT NBR 5738_2015_Concreto - Procedimentos para Moldagem e cura de corpos de prova.pdf.” 2015, Rio de Janeiro, p. 9, 2015.
ABNT, “ABNT NBR 7222 - Concreto e argamassa - Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos.” Rio de Janeiro, p. 5, 2011.
J. T. Kevern, V. R. Schaefer, and K. Wang, “Predicting Performance of Pervious Concrete using Fresh Unit Weight J.T. Kevern 1 ,V.R. Schaefer 2 , and K. Wang 3 1,” 2009.
K. C. Mahboub et al., “Pervious concrete: Compaction and aggregate gradation,” ACI Mater. J., vol. 106, no. 6, pp. 523–528, 2009.
ACI 522-R10, Report On Pervious Concrete (ACI 522-R10). 2010.
A. I. Neptune and B. J. Putman, “Effect of Aggregate Size and Gradation on Pervious Concrete Mixtures,” ACI Mater. J., no. 107, 2010.
P. W. Barnhouse and W. V. Srubar, “Material characterization and hydraulic conductivity modeling of macroporous recycled-aggregate pervious concrete,” Constr. Build. Mater., vol. 110, pp. 89–97, 2016, doi: 10.1016/j.conbuildmat.2016.02.014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Científica Ingeniería y Desarrollo.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.