Data fusion system for classification of liquefied petroleum gases through machine learning techniques
DOI:
https://doi.org/10.14482/inde.41.02.720.891Keywords:
Classification, data fusion, electronic nose, liquefied petroleum gases, machine learning techniquesAbstract
Data fusion (DF) is a process that allows the combination of information from various sources for a specific purpose. A DF system, particularly an electronic nose (EN), was designed and built for a device as described in the patent "Portable equipment to avoid vehicle pollution in service stations" with resolution number 23016. It is an instrument for the classification of liquefied petroleum gases (LPG), the application of which is aimed at recognizing diesel fuel or gasolina, in the supply process. These gases are stored in the fuel tank of cars, and by identifying them take the actions required to prevent the contamination of vehicles with a fuel different from that used by the latter. A system that supports the operation of the EN was implemented. In the processing of the information provided by the sensors of the prototype the methodologies of machine learning, K-Nearest Neighbor and Naive Bayes, for LPG differentiation were used. Through a validity test, it was determined that the accuracy of the implemented techniques was 1, therefore, they are ideal methodologies for the classification of diesel fuel and gasoline in dynamic environments.
References
Universidad Tecnológica de Pereira, “Vicerrectoría de Investigaciones, Innovación y Extensión: Proyectos,” Desarrollo del prototipo que aplica sobre la patente titulada: equipo portátil para evitar la contaminación vehicular en las estaciones de servicio, 2018. https://www2.utp.edu.co/vicerrectoria/investigaciones/investigaciones/DetallesProyecto/2222 (accessed Mar. 19, 2023).
T. Meng, X. Jing, Z. Yan, and W. Pedrycz, “A survey on machine learning for data fusion,” Inf. Fusion, vol. 57, pp. 115–129, 2020, doi: https://doi.org/10.1016/j.inffus.2019.12.001.
R. Bokade et al., “A cross-disciplinary comparison of multimodal data fusion approaches and applications: Accelerating learning through trans-disciplinary information sharing,” Expert Syst. Appl., vol. 165, p. 113885, 2021, doi: https://doi.org/10.1016/j.eswa.2020.113885.
H. Kaur, D. Koundal, and V. Kadyan, “Image Fusion Techniques: A Survey,” Arch. Comput. Methods Eng., vol. 28, no. 7, pp. 4425–4447, 2021, doi: 10.1007/s11831-021-09540-7.
J. Ma, Y. Ma, and C. Li, “Infrared and visible image fusion methods and applications: A survey,” Inf. Fusion, vol. 45, pp. 153–178, 2019, doi: https://doi.org/10.1016/j.inffus.2018.02.004.
I. Moreno, R. Caballero, R. Galán, F. Matía, and A. Jiménez, “La Nariz Electrónica: Estado del Arte,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 6, no. 3, pp. 76–91, Jul. 2009, doi: 10.1016/S1697-7912(09)70267-5.
Z. Wang, P. Chen, and X. Yang, “Application of electronic nose technology in detection of combustible gas,” Proc. World Congr. Intell. Control Autom., pp. 6848–6852, 2010, doi: 10.1109/WCICA.2010.5554209.
J. Palacín, E. Rubies, E. Clotet, and D. Martínez, “Classification of Two Volatiles Using an eNose Composed by an Array of 16 Single-Type Miniature Micro-Machined Metal-Oxide Gas Sensors,” Sensors 2022, Vol. 22, Page 1120, vol. 22, no. 3, p. 1120, 2022, doi: 10.3390/S22031120.
S. Kiani, S. Minaei, and M. Ghasemi-Varnamkhasti, “Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review,” J. Appl. Res. Med. Aromat. Plants, vol. 3, no. 1, pp. 1–9, 2016, doi: 10.1016/J.JARMAP.2015.12.002.
M. Ferreiro-González, G. F. Barbero, M. Palma, J. Ayuso, J. A. Álvarez, and C. G. Barroso, “Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints.,” Sensors (Basel)., vol. 17, no. 11, 2017, doi: 10.3390/s17112544.
A. Oseev, M. Zubtsov, and R. Lucklum, “Gasoline properties determination with phononic crystal cavity sensor,” Sensors Actuators, B Chem., vol. 189, pp. 208–212, 2013, doi: 10.1016/j.snb.2013.03.072.
H. A. Q. Vallejo, “Diseño y construcción de un sistema prototipo para la supervisión del suministro vehicular de gasolina o ACPM, en las estaciones de servicio,” Universidad Tecnológica de Pereira, 2014.
H. A. Q. Vallejo, “Equipo Portátil para Evitar la Contaminación Vehicular en las Estaciones de Servicio,” 2017.
X.-D. W. X.-D. Wang, H.-R. Z. H.-R. Zhang, and C.-J. Z. C.-J. Zhang, “Signals recognition of electronic nose based on support vector machines,” Int. Conf. Mach. Learn. Cybern., vol. 6, no. August, pp. 18–21, 2005, doi: 10.1109/IPCon.2016.7831065.
S. Bedoui, H. Samet, M. Samet, and A. Kachouri, “Gases identification with Support Vector Machines technique (SVMs),” in 2014 1st International Conference on Advanced Technologies for Signal and Image Processing, ATSIP 2014, 2014, pp. 271–276, doi: 10.1109/ATSIP.2014.6834620.
V. A. Zarate, “Diseño de un manual de procedimientos y medidas de seguridad para una estación de servicio de combustible en zona rural colombiana,” Universidad Católica de Colombia, 2021.
ELMOTOR, “Qué debes hacer si en la gasolinera te ponen el combustible equivocado,” 25 de noviembre de 2017, 2017. https://motor.elpais.com/conducir/que-pasa-combustible-equivocado/ (accessed Jun. 14, 2022).
M. de C. S. A. . E.S.P, “Manual de uso GLP.” p. 15, 2020, [Online]. Available: http://multigasdecolombia.com.co/archivos/manejo_seguro.pdf.
N. A. Pérez, “Aplicabilidad del Procesamiento de Lenguaje Natural al análisis de errores en logs de aplicativos utilizados en el área de BSS (Business Support System),” Universidad de Valladolid, 2019.
T. C. Pearce, S. S. Schiffman, H. T. Nagle, and J. W. Gardner, Handbook of machine olfaction: electronic nose technology. John Wiley & Sons, 2006.
N. I. Corporation, “Módulo LabVIEW,” 2019. http://www.ni.com/es-co/support/downloads/software-products/download.labview-mathscript-module.html#305903 (accessed Jun. 14, 2022).
A. Industries, “BMP085 Library,” 2014. https://github.com/adafruit/Adafruit-BMP085-Library (accessed Jun. 14, 2022).
A. Industries, “DHT sensor library,” 2015. https://github.com/adafruit/DHT-sensor-library (accessed Jun. 14, 2022).
A. Industries, “Common sensor library,” 2017. https://github.com/adafruit/Adafruit_Sensor (accessed Jun. 14, 2022).
Arduino.cc, “Arduino - Wire.” https://www.arduino.cc/en/Reference/Wire (accessed Jun. 14, 2022).
A. D. Wilson and M. Baietto, “Advances in electronic-nose technologies developed for biomedical applications,” Sensors, vol. 11, no. 1, pp. 1105–1176, 2011, doi: 10.3390/s110101105.
F. An ISO9001 company, “TGS 2610 - for the detection of Combustible Gases.” p. 13, 2000, [Online]. Available: http://www.meditronik.com.pl/doc/b0-b9999/tgs2610.pdf.
S. R. Bosch, “Diseño y realización de una nariz electrónica para la discriminación de aceites,” Universitat Rovira i Virgili, 2001.
M. Ferreiro-González, J. Ayuso, J. A. Álvarez, M. Palma, and C. G. Barroso, “Application of an HS-MS for the detection of ignitable liquids from fire debris.,” Talanta, vol. 142, pp. 150–156, 2015, doi: 10.1016/j.talanta.2015.04.030.
T. Soba?ski, A. Szczurek, K. Nitsch, B. W. Licznerski, and W. Radwan, “Electronic nose applied to automotive fuel qualification,” Sensors Actuators, B Chem., vol. 116, no. 1–2, pp. 207–212, 2006, doi: 10.1016/j.snb.2005.11.087.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Científica Ingeniería y Desarrollo.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.