Treatment of domestic sewage with high rate algal ponds, evaluation of startup with two percentages of inoculation
DOI:
https://doi.org/10.14482/inde.42.01.001.414Keywords:
wastewater treatment, waste stabilization ponds, septic tank, pollutant removal, inoculation, effluentAbstract
The main objective of this research was to evaluate the effect of two percentages of inoculum used for the startup of high rate algal ponds (HRAP) in the postreatment of effluent of septic tank. The HRAP1 and HRAP2 were inoculated by the substitution of 3.25 % and 6.50 % of the effective volume with liquid from a HRAP operated with a hydraulic retention time of eight days. During seven consecutive days the variables organic nitrogen (ON), total ammonia nitrogen (TAN), total phosphorous (TP), chemical oxygen demand (COD) and chlorophyll-a were measured; the phytoplankton was quantified and characterized. The chlorophyll-a concentrations in the HRAP1 varied between 451.2 and 1,802.2 µg/L and in the HRAP2 between 339.1 and 2,194.7 µg/L, the final densities of phytoplankton were respectively of 683,200 and 5’535,130 organisms/mL, with presence of individuals of the Chlorophyceae, Cryptophyceae and Euglenophyceae classes in the two ponds. The calculated removal efficiencies for the HRAP1 and HRAP2 were respectively: 37.1 and 51.6 % for ON; 89.6 and 97.3 % for TAN; 30.4 and 30.3 % for TP; -1.3 and -53.2 % for COD; 1495 and 2398 Log units for E. coli. The inoculation promoted the rapid growth of the phytoplankton communities, with best results for nitrogen removal and E. coli inactivation due the use of higher amounts of inoculum.
References
A. Trapote-Jaume. Depuración y regeneración de aguas residuales urbanas. Publicacions Universitat Alacant, 2016.
Y. Xu, X. Lu y F. Chen, “Field investigation on rural domestic sewage discharge in a typical village of the Taihu Lake Basin”, IOP Conference Series: Earth and Environmental Science, vol. 546, p. 032031 , 2020. doi:10.1088/1755-1315/546/3/032031.
D. Mara, Domestic wastewater treatment in developing countries. Londres: Earthscan Editors, 2004. doi:10.4324/9781849771023.
M. Von Sperling y C. A. Chernicharo, Biological wastewater treatment in warm climate regions. Padstow, UK: IWA Publishing, 2005. doi:10.2166/9781780402734
F. R. Spellman, Water and wastewater treatment plant operations. 2ª ed. Boca Ratón, FL, USA: Taylor & Francis Group, 2009. doi:10.1201/b15579.
G. Correa-Restrepo, H. Cuervo-Fuentes, R. Mejía-Ruíz y N. Aguirre, “Monitoreo del sistema de lagunas de estabilización del municipio de Santa Fe de Antioquia, Colombia”, Producción + Limpia, vol. 7, nº. 2, pp. 36-51, 2012.
I. López-Hernández, N. B. Ortega-Morales, S. A. Ortiz-Diaz, E. A. Flores-Hernandez, L. A. Pérez-García y M. Medrano-Santillana, “Reduction of hydrogen sulfide by recirculation of effluents in stabilization ponds with the presence of microalgae”, Revista mexicana de ciencias agrícolas, vol. 13, nº. 1, pp. 29-40, 2022. doi:10.29312/remexca.v13i1.3096.
S. Kayombo, T. S. A. Mbwette, J. H. Y. Katima, N. Ladegaard, and S. E. Jørgensen, Waste stabilization ponds and constructed wetlands design manual. Osaka, Japan: United National Environment Programme, 2005.
V. A. Cerón-Hernández, C. A. Madera-Parra y M. Peña-Varón, “Uso de lagunas algales de alta tasa para tratamiento de aguas residuales”. Ingeniería y Desarrollo, vol. 33, nº. 1, pp. 98-125, 2015. doi:10.14482/inde.33.1.5318.
A. Mehrabadi, R. Craggs y M. M. Farid, “Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production”, Bioresource Technology, vol. 184, pp. 202-214, 2015. doi:10.1016/j.biortech.2014.11.004.
R. J. Craggs, S. Heubeck, T. J. Lundquist y J. R. Benemann, “Algal biofuels from wastewater treatment high rate algal ponds”, Water Science and Technology, vol. 63, nº. 4, pp. 660-665, 2011. doi:10.2166/wst.2011.100.
H. D. Maobe, M. Onodera, M. Takahashi, H. Satoh y T. Fukazawa, “Control of algal production in a high rate algal pond: investigation through batch and continuous experiments”, Water Science and Technology, vol. 69, nº. 12, pp. 2519-2525, 2014. doi:10.2166/wst.2014.174.
V. Montemezzani, I. C. Duggan, I. D. Hogg y R. J. Craggs, “A review of potential methods for zooplankton control in wastewater treatment High Rate Algal Ponds and algal production raceways”, Algal Research, vol. 11, pp. 211-226, 2015. doi:10.1016/j.algal.2015.06.024.
APHA: American Public Health Association, AWWA: American Water Works Association y WEF: Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. 21a ed. Washington, D.C.: American Public Health Association, 2005.
C. A. L. Chernicharo, Anaerobic Reactors. Biological Wastewater Treatment Series - Volume Four. Padstow, UK: IWA Publishing, 2007. doi:10.2166/9781780402116.
Metcalf y Eddy and AECOM, Wastewater Engineering: Treatment and Resource Recovery. 5a ed. New York: McGraw-Hill Education, 2014.
J. C. Akunna, Anaerobic Waste-Wastewater Treatment and Biogas Plants A Practical Handbook. Boca Raton-FL, USA. CRC Press/Taylor & Francis Group, 2019.
M. Von Sperling, Principios del tratamiento biológico de aguas residuales. Vol. 2: Principios básicos del tratamiento de aguas residuales. Pasto, Nariño (Colombia): Editorial Universitaria - Universidad de Nariño, 2019.
A. F. Santiago, M. L. Calijuri, P. P. Assemany, M. do C. Calijuri y A. J. D. dos Reis, “Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent”, Environmental Technology, vol. 34, nº. 13-14, pp. 1877-1885, 2013 doi:10.1080/09593330.2013.812670.
P. Young, M. Taylor y H. J. Fallowfield, “Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment”, World Journal Microbiology and Biotechnology, vol. 33, nº. 6, pp. 117, 2017. doi:10.1007/s11274-017-2282-x.
P. Chatterjee and M. M. Ghangrekar, “Biomass granulation in an upflow anaerobic sludge blanket reactor treating 500 m3/day low strength sewage and post treatment in high rate algal pond”, Water Science & Technology, vol. 76, nº. 5-6, pp. 1234-1242, 2017. doi:10.2166/wst.2017.269.
A. W. Mayo y E. E. Hanai, “Dynamics of nitrogen transformation and removal in a pilot high rate pond”, Journal of Water Resource and Protection, vol. 6, nº. 5, pp. 433-445. doi:10.4236/jwarp.2014.65043.
I. A. Sánchez-Ortiz, R. K. X. Bastos y E. A. T. Lana, “Tilapia rearing with high rate algal pond effluent: ammonia surface loading rates and stocking densities effects”, Water Science and Technology, vol. 78, nº. 1, pp. 49-56, 2018. doi:10.2166/wst.2018.285.
L. R. Assis, M. L. Calijuri, E. A. Couto y P. P. Assemany, “Microalgal biomass production and nutrients removal from domestic sewage in a hybrid high-rate pond with biofilm reactor”, Ecological Engineering, vol. 106, part A, pp. 191-199, 2017. doi:10.1016/j.ecoleng.2017.05.040.
N. Buchanan, P. Young, N. J. Cromar y H. J. Fallowfield, “Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia”, Water Science & Technology, vol. 78, nº. 1, pp. 3-11, 2018. doi: 10.2166/wst.2018.201.
P. Young, N. Buchanan y H. J. Fallowfield, “Inactivation of indicator organisms in wastewater treated by a high rate algal pond system”, Journal of Applied Microbiology, vol. 121, pp. 577-586, 2016. doi:10.1111/jam.13180.
A. B. Sales, “Taxonomia, estrutura e dinâmica do fitoplâncton e do zooplâncton em um sistema piloto de tratamento de esgoto sanitário em lagoas de polimento”, Ph.D. Tese Programa de Pós-Graduação em Botânica. Universidade Federal de Viçosa. Viçosa, Minas Gerais, Brasil, 2011.
E. A. Couto, M. L. Calijuri, P. P. Assemany, M. D. Tango y A. F. Santiago, “Influence of solar radiation on nitrogen recovery by the biomass grown in high rate ponds”, Ecological Engineering, vol. 81, pp. 140–145, 2015. doi:10.1016/j.ecoleng.2015.04.040.
M. J. García-Galán, L. Arashiro, L. H. M. L. M. Santos, S. Insa, S. Rodríguez-Mozaz, D. Barceló, I. Ferrer y M. Garfi, “Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems”, Journal of Hazardous Materials, vol. 390, 121771, 2020. doi:10.1016/j.jhazmat.2019.121771.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Científica Ingeniería y Desarrollo.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.