Kinetic study of long-term atmospheric corrosion for carbon steel and galvanized steel exposed in Medellín city

Authors

DOI:

https://doi.org/10.14482/inde.42.01.823.445

Keywords:

Atmospheric corrosion, Carbon steel, Galvanized steel, Mass loss, Kinetics

Abstract

Atmospheric corrosion is one of the natural phenomena with the greatest impact on the integrity of metallic infrastructures worldwide and especially in tropical environments. However; most atmospheric corrosion studies carried out in natural environments do not exceed 5 years of exposure; and studies with results of 10 or more years are even fewer. This study evaluates the corrosion kinetics of carbon and galvanized steels exposed in the downtown area of Medellín; classified as a moderate aggressiveness environment; from results obtained at 1; 2; 5; 8 and 11 years. For both materials; a corrosion kinetic equation was obtained from Log-Log plots of mass loss; useful for making long-term predictions of the deterioration of structures exposed to the atmosphere. The corrosion of the galvanized was approximately between 10 to 17 times lower than that of carbon steel.

References

D. Askeland, Ciencia e ingeniería de materiales, 7th ed. México D.F: Cengage Learning, 2017.

F. Zafar, H. Bano, A. Mahmood, F. Corvo y J. Rodriguez, “Physicochemical studies of mild steel corrosion and atmospheric corrosivity mapping of Karachi: An important harbor city of modern Maritime Silk Route”, Materials and Corrosion, vol. 71, nº. 9, pp. 1557-1575, 2020. doi: 10.1002/maco.202011793.

V. Kucera y E. Mattsson, “Atmospheric corrosion, in F. Mansfeld,” in Corrosion Mechanisms. New York: Marcel Dekker, 1987, pp. 211–284.

J. G. Castaño, C. A. Botero, A. H. Restrepo, E. A. Agudelo, E. Correa y F. Echeverría, “Atmospheric corrosion of carbon steel in Colombia”, Corros Sci, vol. 52, nº. 1, pp. 216-223, 2010. doi: 10.1016/j.corsci.2009.09.006.

M. Morcillo et al. (Eds.), Corrosión y protección de metales en las atmósferas de Iberoamérica, vol. 1. Madrid: CYTED, 1998.

S.W. Dean, D. Knotkova y K. Kreislova, “ISOCORRAG”, en International Atmospheric Exposure Program: Summary of Results, ASTM Data Series 71, ASTM International, West Conshohocken, 2010.

D. Thierry, D. Persson, A. Gac, N. Lebozec, A. Peltola y P. Väisänen, “Long-term atmospheric corrosion of Zn–5%Al-coated steel and HDG during outdoor worldwide exposures”, Corrosion Engineering, Science and Technology, vol. 55, pp. 1-11, 2020. doi: 10.1080/1478422X.2020.1750162.

M. Ivaskova, P. Kotes y M. Brodnan, “Air pollution as an important factor in construction materials deterioration in Slovak Republic”, en Procedia Engineering, Elsevier Ltd, 2015, pp. 131-138. doi: 10.1016/j.proeng.2015.06.128.

Y. W. Liu, Z. Y. Wang, G. W. Cao, Y. Cao y Y. Huo, “Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment”, Mater Chem Phys, vol. 198, pp. 243-249, Sep. 2017. doi: 10.1016/j.matchemphys.2017.05.043.

C. Leygraf, I. Wallinder, J. Tidblad, and T. Graedel, Atmospheric Corrosion, 2nd ed. New Jersey: John Wiley & Sons, 2016.

D. de la Fuente, I. Díaz, J. Simancas, B. Chico y M. Morcillo, “Long-term atmospheric corrosion of mild steel”, Corros Sci, vol. 53, nº. 2, pp. 604-617, 2011. doi: 10.1016/j.corsci.2010.10.007.

D. de la Fuente, J. G. Castaño y M. Morcillo, “Long-term atmospheric corrosion of zinc”, Corros Sci, vol. 49, nº. 3, pp. 1420-1436, 2007. doi: 10.1016/j.corsci.2006.08.003.

CW. Briggs, “Atmospheric Corrosion of Carbon and Low Alloy Cast Steels”, Metal Corrosion in the Atmosphere, ASTM STP 435, American Society for Testing and Materials, pp. 271-284, 1968.

J. G. Castaño, C. A. Botero, A. H. Restrepo, E. A. Agudelo, E. Correa y F. Echeverría, “Atmospheric corrosion of carbon steel in Colombia”, Corros Sci, vol. 52, nº. 1, pp. 216-223, Jan. 2010, doi: 10.1016/j.corsci.2009.09.006.

V. Kucera, D. Knotkova, J. Fullman y P. Holler, “Corrosion of Structural Metals in Atmospheres with Different Corrosivity at 8 Years’ Exposure in Sweden and Czechoslovakia”, Proceedings 10th International Congress in Metallic Corrosion, Madras, India, 1987, p. 167.

W. Hou y C. Liang, “Eight-Year Atmospheric Corrosion Exposure of Steels in China”, Corrosion, vol. 55, nº. 1, pp. 65-73, Jan. 1999. doi: 10.5006/1.3283967.

D. Thierry, N. Lebozec, A. Gac y D. Persson, “Long-term atmospheric corrosion rates of hot dip galvanised steel and zinc-aluminium-magnesium coated steel”, Materials and Corrosion, vol. 70, Apr. 2019. doi: 10.1002/maco.201911010.

ISO 9223, “Corrosion of metals and alloys, Corrosivity of atmospheres. Classification”, 2012.

ASTM G1, “Preparing, Cleaning, and Evaluating Corrosion Test Specimens”, 2017.

Published

2024-01-02

How to Cite

[1]
D. A. Montoya Alzate and J. G. Castaño González, “Kinetic study of long-term atmospheric corrosion for carbon steel and galvanized steel exposed in Medellín city”, Ing. y Des., vol. 42, no. 1, pp. 89–104, Jan. 2024.