The importance of chemical engineering in the academy-industry-government-society alliance (aigs) in the Colombian Caribbean region
DOI:
https://doi.org/10.14482/inde.42.02.326.489Keywords:
Action field, Chemical engineering, Quadruple alliance, Job offerAbstract
Chemical engineering is crucial in society and can contribute to the collaboration between Academy, Industry, Government, and Society (AIGS) to promote sustainable projects and knowledge transfer in the Caribbean region of Colombia. This study examines the impact of chemical engineering in the region, including program offerings, indicators of chemical engineering programs, job market, and opportunities for projects with societal impact. Four public and private institutions have been identified, each offering comprehensive 10-semester study programs designed to cultivate both technical expertise and humanistic education in aspiring chemical engineers. These programs aim to equip students with the necessary tools to tackle the pressing challenges of sustainability. The curriculum is structured into distinct components: foundation (34%), engineering basics (17%), professional (39%), and humanities (11%). However, disparities in student enrollment numbers between public and private institutions have emerged, posing a potential risk to the sustainability of programs in the latter. The chemical industry is prominent, with diversification in Atlántico and a focus on the petrochemical sector in Bolívar. Graduates of chemical engineering in the Caribbean region have diverse career opportunities with employability ranges between 50% and 80%. Besides, Clusters and CUEEs are important initiatives that guide collaboration within the AIGS alliance, utilizing methodologies for strategic management and participatory projects to receive state funding for developments through Science, Technology, and Innovation. This study's results demonstrate that the practice of chemical engineering in the Caribbean region is harmonized with the region's strategic goals, cultivating socio-economic benefits through collaborations between companies and universities. Furthermore, these findings offer direction to higher education institutions, particularly private ones, encouraging proactive efforts to secure resources for projects. These initiatives, in turn, create avenues to expand educational opportunities for economically disadvantaged students.
References
A. Díaz Lantada, “Engineering Education 5.0: Strategies for a Successful Transformative Project-Based Learning,” in Insights Into Global Engineering Education After the Birth of Industry 5.0, IntechOpen, 2022. doi: 10.5772/intechopen.102844.
J. García-Serna, R. Piñero-Hernanz, and D. Durán-Martín, “Inspirational perspectives and principles on the use of catalysts to create sustainability,” Catal Today, vol. 387, no. September 2021, pp. 237–243, 2022, doi: 10.1016/j.cattod.2021.11.021.
A. Gamoran, “Advancing Institutional Change to Encourage Faculty Participation in Research-Practice Partnerships,” Educational Policy, vol. 37, no. 1, pp. 31–55, Jan. 2023, doi: 10.1177/08959048221131564.
S. Núñez, E. A. Zuluaga-Hernández, N. Teran, J. Puello, L. Ramírez, and L. Bossa, “Design and implementation of a treatment plant for the disposal of wastewater from portable toilets,” Revista Ing-Nova, vol. 1, no. 2, pp. 195–204, Jul. 2022, doi: 10.32997/rin-2022-4004.
D. B. De Oliveira, R. W. Becker, C. Sirtori, and C. G. Passos, “Development of environmental education concepts concerning chemical waste management and treatment: The training experience of undergraduate students,” Chemistry Education Research and Practice, vol. 22, no. 3, pp. 653–661, 2021, doi: 10.1039/d0rp00170h.
Z. Yao, T. Yan, and M. Hu, “Comparison of undergraduate chemical engineering curricula between China and America Universities based on statistical analysis,” Education for Chemical Engineers, vol. 38, no. October 2021, pp. 55–59, 2022, doi: 10.1016/j.ece.2021.10.003.
B. J. Ralph, M. Woschank, C. Pacher, and M. Murphy, “Evidence-based redesign of engineering education lectures: theoretical framework and preliminary empirical evidence,” European Journal of Engineering Education, vol. 47, no. 4, pp. 636–663, 2022, doi: 10.1080/03043797.2021.2025341.
C. J. Kamp and S. Bagi, “Perspectives on Current and Future Requirements of Advanced Analytical and Characterization Methods in the Automotive Emissions Control Industry,” SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy, vol. 2, no. 2, pp. 141–160, 2021, doi: 10.4271/13-02-02-0009.
L. F. M. Franco et al., “A competency-based chemical engineering curriculum at the University of Campinas in Brazil,” Education for Chemical Engineers, vol. 44, pp. 21–34, 2023, doi: https://doi.org/10.1016/j.ece.2023.04.001.
Y. Qian, S. Vaddiraju, and F. Khan, “Safety education 4.0 – A critical review and a response to the process industry 4.0 need in chemical engineering curriculum,” Saf Sci, vol. 161, p. 106069, 2023, doi: https://doi.org/10.1016/j.ssci.2023.106069.
B. Hrn?i?, A. Pfeifer, F. Juri?, N. Dui?, V. Ivanovi?, and I. Vušanovi?, “Different investment dynamics in energy transition towards a 100% renewable energy system,” Energy, vol. 237, 2021, doi: 10.1016/j.energy.2021.121526.
J. C. C. M. Huijben, A. Van den Beemt, A. J. Wieczorek, and M. H. Van Marion, “Networked learning to educate future energy transition professionals: results from a case study,” European Journal of Engineering Education, vol. 47, no. 3, pp. 446–466, 2022, doi: 10.1080/03043797.2021.1978403.
P. Anastas et al., “The Power of the United Nations Sustainable Development Goals in Sustainable Chemistry and Engineering Research,” ACS Sustain Chem Eng, vol. 9, no. 24, pp. 8015–8017, 2021, doi: 10.1021/acssuschemeng.1c03762.
J. G. Segovia-Hernández, S. Hernández, E. Cossío-Vargas, and E. Sánchez-Ramírez, “Challenges and opportunities in process intensification to achieve the UN’s 2030 agenda: Goals 6, 7, 9, 12 and 13,” Chemical Engineering and Processing - Process Intensification, vol. 192, p. 109507, 2023, doi: https://doi.org/10.1016/j.cep.2023.109507.
N. Yoda and K. Kuwashima, “Triple Helix of University–Industry–Government Relations in Japan: Transitions of Collaborations and Interactions,” Journal of the Knowledge Economy, vol. 11, no. 3, pp. 1120–1144, 2020, doi: 10.1007/s13132-019-00595-3.
A. M. Vélez-Rolón, M. Méndez-Pinzón, and O. L. Acevedo, “Open innovation community for university–industry knowledge transfer: A Colombian case,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 6, no. 4, pp. 1–17, 2020, doi: 10.3390/joitmc6040181.
M. Jovanovi?, G. Savi?, Y. Cai, and M. Levi-Jakši?, Towards a Triple Helix based efficiency index of innovation systems, vol. 127, no. 5. Springer International Publishing, 2022. doi: 10.1007/s11192-022-04304-x.
Y. Tao and P. H. Lin, “Analyses of Sustainable Development of Cultural and Creative Parks: A Pilot Study Based on the Approach of CiteSpace Knowledge Mapping,” Sustainability (Switzerland), vol. 15, no. 13. Multidisciplinary Digital Publishing Institute (MDPI), Jul. 01, 2023. doi: 10.3390/su151310489.
E. G. Carayannis, D. F. J. Campbell, and E. Grigoroudis, “Helix Trilogy: the Triple, Quadruple, and Quintuple Innovation Helices from a Theory, Policy, and Practice Set of Perspectives,” Journal of the Knowledge Economy, vol. 13, no. 3, pp. 2272–2301, Sep. 2022, doi: 10.1007/s13132-021-00813-x.
M. Roman and K. Fellnhofer, “Facilitating the participation of civil society in regional planning: Implementing quadruple helix model in Finnish regions,” Land use policy, vol. 112, Jan. 2022, doi: 10.1016/j.landusepol.2021.105864.
J. Huang and K. Xiong, “Knowledge production of university-industry collaboration in academic capitalism: An analysis based on Hoffman’s framework,” Asian J Soc Sci, 2023, doi: https://doi.org/10.1016/j.ajss.2023.06.002.
B. Bossink, M. L. Blankesteijn, and S. Hasanefendic, “Upscaling sustainable energy technology: From demonstration to transformation,” Energy Res Soc Sci, vol. 103, p. 103208, 2023, doi: https://doi.org/10.1016/j.erss.2023.103208.
B. R. Bhattacharjya, S. Bhaduri, and S. K. Kakoty, “Co-creating community-led frugal innovation: An adapted Quadruple Helix?,” Technovation, vol. 124, Jun. 2023, doi: 10.1016/j.technovation.2023.102752.
O. Kolade, A. Adegbile, and D. Sarpong, “Can university-industry-government collaborations drive a 3-D printing revolution in Africa? A triple helix model of technological leapfrogging in additive manufacturing,” Technol Soc, vol. 69, May 2022, doi: 10.1016/j.techsoc.2022.101960.
H. T. Nguyen and P. Marques, “The promise of living labs to the Quadruple Helix stakeholders: exploring the sources of (dis)satisfaction,” European Planning Studies, vol. 30, no. 6, pp. 1124–1143, 2022, doi: 10.1080/09654313.2021.1968798.
L. Leydesdorff, “The knowledge-based economy and the triple helix model,” Understanding The Dynamics Of A Knowledge Economy, vol. 44, pp. 42–76, 2006, doi: 10.4337/9781845429898.00009.
J. E. Martínez-Iñiguez, S. Tobón, and J. A. Soto-Curiel, “Key axes of the socioformative educational model for university training in the transformation framework towards sustainable social development,” Formacion Universitaria, vol. 14, no. 1, pp. 53–66, 2021, doi: 10.4067/S0718-50062021000100053.
J. R. Ojeda and F. José, “Productividad académica en siete universidades de la región Caribe Colombiana,” Revista Espacios, vol. 41, no. 23, pp. 146–157, 2020.
SNIES, “Bases Consolidadas de Educación Superior,” 2022. https://snies.mineducacion.gov.co/portal/ESTADISTICAS/Bases-consolidadas/
T. J. Fontalvo, E. J. Delahoz-Dominguez, and J. Morelos, “Design of an integrated quality management system for Colombian higher education academic programs,” Formacion Universitaria, vol. 14, no. 1, pp. 45–52, 2021, doi: 10.4067/S0718-50062021000100045.
F. Telch, C. Isaza, and N. Rubaii, “Governance challenges within national development planning: lessons from the Colombian experience,” International Review of Public Administration, vol. 25, no. 3, pp. 175–191, 2020, doi: 10.1080/12294659.2020.1802869.
T. e I. Ministerio de Ciencia, “Convocatorias Minciencias,” https://minciencias.gov.co/convocatorias/todas.
Ministerio de Hacienda, “Departamento Nacional de Planeación,” https://www.datos.gov.co/Econom-a-y-Finanzas/DNP-ProyectosSGR/mzgh-shtp, 2023.
Ministerio de minas y energía, “Proyectos de inversión,” https://www.minenergia.gov.co/es/ministerio/gesti%C3%B3n/proyectos-de-inversi%C3%B3n/.
Ministerio de Industria Y Comercio, “Perfiles económicos y comerciales por departamentos,” 2022. https://www.mincit.gov.co/estudios-economicos/perfiles-economicos-por-departamentos
Scimago, “Scimago Institution Rankings,” 2022. https://www.scimagoir.com/compare.php?idps[]=1927&idps[]=1909&idps[]=74194&idps[]=1964
G. M. Kontogeorgis, S. Jhamb, X. Liang, and K. Dam-Johansen, “Computer-aided design of formulated products,” Curr Opin Colloid Interface Sci, vol. 57, p. 101536, 2022, doi: 10.1016/j.cocis.2021.101536.
M. Prausnitz, “How Chemical Engineering Students Have Changed Over Two Decades: A Perspective From Georgia Tech,” Chem Eng Educ, vol. 56, no. 2, 2021, doi: 10.18260/2-1-370.660-128734.
M. Popova, A. Kraft, J. Harshman, and M. Stains, “Changes in teaching beliefs of early-career chemistry faculty: A longitudinal investigation,” Chemistry Education Research and Practice, vol. 22, no. 2, pp. 431–442, 2021, doi: 10.1039/d0rp00313a.
M. Th. et al., “The importance/role of education in chemical engineering,” Chemical Engineering Research and Design, vol. 187, pp. 164–173, 2022, doi: 10.1016/j.cherd.2022.08.061.
E. Leong, A. Mercer, S. M. Danczak, S. H. Kyne, and C. D. Thompson, “The transition to first year chemistry: Student, secondary and tertiary educator’s perceptions of student preparedness,” Chemistry Education Research and Practice, vol. 22, no. 4, pp. 923–947, 2021, doi: 10.1039/d1rp00068c.
DANE, “Geoportal,” 2022. https://geoportal.dane.gov.co/geovisores/economia/pib-departamental/ (accessed Aug. 30, 2022).
P. San-Valero, A. Robles, M. V. Ruano, N. Martí, A. Cháfer, and J. D. Badia, “Workshops of innovation in chemical engineering to train communication skills in science and technology,” Education for Chemical Engineers, vol. 26, pp. 114–121, 2019, doi: 10.1016/j.ece.2018.07.001.
Asociación Colombiana de Facultades de Ingeniería - ACOFI, “Una mirada a la Ingeniería Química Colombiana Academía - Industria - Gobierno,” Bogotá, 2020.
Universidad de los Andes, “Congresistas,” 2022. https://congresovisible.uniandes.edu.co/congresistas/
D. B. de Campos, L. M. M. de Resende, and A. B. Fagundes, “The Importance of Soft Skills for the Engineering,” Creat Educ, vol. 11, no. 08, pp. 1504–1520, 2020, doi: 10.4236/ce.2020.118109.
J. Höper, K. M. Jegstad, and K. B. Remmen, “Student teachers’ problem-based investigations of chemical phenomena in the nearby outdoor environment,” Chemistry Education Research and Practice, vol. 23, no. 2, pp. 361–372, 2021, doi: 10.1039/d1rp00127b.
L. Nielsen, S. Tølbøll Glavind, J. Qin, and M. H. Faber, “Faith and fakes–dealing with critical information in decision analysis,” Civil Engineering and Environmental Systems, vol. 36, no. 1, pp. 32–54, 2019, doi: 10.1080/10286608.2019.1615476.
V. Venkatasubramanian, “The promise of artificial intelligence in chemical engineering: Is it here, finally?,” AIChE Journal, vol. 65, no. 2, pp. 466–478, 2019, doi: 10.1002/aic.16489.
E. N. Pistikopoulos et al., “Process systems engineering – The generation next?,” Comput Chem Eng, vol. 147, p. 107252, 2021, doi: 10.1016/j.compchemeng.2021.107252.
E. P. Byrne, “The evolving engineer; professional accreditation sustainability criteria and societal imperatives and norms,” Education for Chemical Engineers, vol. 43, pp. 23–30, 2023, doi: https://doi.org/10.1016/j.ece.2023.01.004.
C. J. Oliveira, M. T. dos Santos, and A. S. Vianna, “A proposal to cover stochastic models in chemical engineering education,” Education for Chemical Engineers, vol. 38, no. December 2021, pp. 86–96, 2022, doi: 10.1016/j.ece.2021.12.002.
Comisión Nacional del Servicio Civil, “Ofertas de Empleo,” 2022. https://simo.cnsc.gov.co/
Ecopetrol, “Oportunidades Laborales Vigentes,” 2022. https://www.ecopetrol.com.co/wps/portal/Home/es/trabaje-con-nosotros/oportunidades-laborales/oportunidades-laborales-vigentes
M. Bustamante Chong, C. Bustamante Chong, V. Caañamo Bustamante, and F. Cabezas Galarza, “Análisis de la gestión de procesos administrativos en el departamento de talento humano,” Revista San Gregorio, vol. 31, pp. 64–71, 2019.
Ministerio de Minas y Energía, “La transición energética justa en Colombia seguirá avanzando de manera gradual,” Mar. 29, 2023. https://www.minenergia.gov.co/es/sala-de-prensa/noticias-index/la-transici%C3%B3n-energ%C3%A9tica-justa-en-colombia-seguir%C3%A1-avanzando-de-manera-gradual/ (accessed Aug. 31, 2023).
El Colombiano, “La regasificadora de Barú inició su tarea de ampliación,” https://www.elcolombiano.com/negocios/la-regasificadora-de-baru-inicio-su-tarea-de-ampliacion-PA20756810, Mar. 10, 2023. https://www.elcolombiano.com/negocios/la-regasificadora-de-baru-inicio-su-tarea-de-ampliacion-PA20756810 (accessed Aug. 31, 2023).
A. De, L. U. De, D. Tipos, S. De, A. De Energía, and E. Informe, “COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS-CREG.” Accessed: Aug. 31, 2023. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/3060300a3ba0ee0a052589190061f3e2/$FILE/IEB_1037_22_01_Informe_2.pdf
E. A. Gómez, D. Ocampo, and L. A. Rios, “Reúso de residuos líquidos generados en la licuefacción hidrotérmica de microalgas provenientes de la industria cementera,” Información tecnológica, vol. 33, no. 6, pp. 103–112, Dec. 2022, doi: 10.4067/s0718-07642022000600103.
Y. Cai and A. Lattu, “Triple Helix or Quadruple Helix: Which Model of Innovation to Choose for Empirical Studies?,” Minerva, vol. 60, no. 2, pp. 257–280, 2022, doi: 10.1007/s11024-021-09453-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Científica Ingeniería y Desarrollo.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.