Effect of permeability on the factor of safety of earthen dams under rainfall

Authors

DOI:

https://doi.org/10.14482/inde.43.01.748.528

Keywords:

volumetric water content, safety factor, rainfall intensity, permeability, earthen dams

Abstract

In this research, permeability and volumetric water content are related to evaluate their influence on the safety factor of 30-meter-high homogeneous earthen dams. For this, five analysis cases are considered, including clayey soils in the embankment, one for each case: a drainage prism and a waterproof base. Establishing three relationships between permeability and volumetric water content, based on the parameters of the soil studies and with the use of the Terzaghi and Schlichter equations, the fundamental conditions of the investigation are established. Five days of continuous rain are considered for three intensities, related to the saturated permeability of each soil. For this, a hybrid model of finite elements and limit equilibrium is used, through the GeoStudio (2018) program. The result allows establishing a relationship between the failure time, the permeability estimation method and the safety factor for the rain intensities, observing that, with the application of the Schlichter method, the safety factor decreases abruptly in the first 48 hours, while for the Terzaghi method the results show a greater similarity with those obtained from the parameters of the soil studies.

References

S. K. Vanapalli and F. M. O. Mohamed, “Bearing capacity and settlement behaviour of footings in an unsaturated sand,” Int. J. GEOMATE, vol. 5, no. 1, pp. 595–604, 2013, doi: 10.21660/2013.9.3k.

J. A. Mendoza, “Influencia de las propiedades no saturadas del suelo en los análisis numéricos de flujo de agua y estabilidad de taludes,” Universidad Nacional Autónoma de México, 2018. [Online]. Available: http://journal.stainkudus.ac.id/index.php/equilibrium/article/view/1268/1127%0Ahttp://publicacoes.cardiol.br/portal/ijcs/portugues/2018/v3103/pdf/3103009.pdf%0Ahttp://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-75772018000200067&lng=en&tlng=

I. Flores, J. G. Tristá, and Y. G. Haramboure, “Estabilidad de taludes durante un desembalse rápido en presas de tierra con suelos parcialmente saturados,” Ingenieria y Desarrollo, vol. 38, no. 1, pp. 13–31, 2020, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-34612020000100013&lng=en&nrm=iso&tlng=es%0Ahttp://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-34612020000100013&lng=en&nrm=iso&tlng=es

D. G. Fredlund and H. Rahardjo, Soil Mechanics for Unsaturated Soils, John Wiley. London: John Wiley & Sons, Inc., 1993.

M. Ahmadi-adli, N. Huvaj, and N. K. Toker, “Rainfall-triggered landslides in an unsaturated soil: A laboratory flume study,” Env. Earth Sci., vol. 76, p. 735, 2017, doi: 10.1007/s12665-017-7049-z.

J. Kim, Y. Kim, S. Jeong, and M. Hong, “Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes,” Environ. Earth Sci., vol. 76, p. 808, 2017, doi: https://doi.org/10.1007/s12665-017-7127-2.

H.-F. Yeh, J. Wang, K.-L. Shen, and C.-H. Lee, “Rainfall characteristics for anisotropic conductivity of unsaturated soil slopes,” Environ. Earth Sci., vol. 73, pp. 8669–8681, 2015, doi: 10.1007/s12665-015-4032-4.

J. G. Tristá, “Estudio del comportamiento tenso-deformacional de suelos parcialmente saturados en Cuba,” Universidad Central “Marta Abreu” de las Villas; Instituto Superior Politécnico ¨José Antonio Echeverría¨, 2015.

L. M. Arya and J. F. Paris, “A Physicoempirical Model to Predict the Soil Moisture Characteristic from Particle-Size Distribution and Bulk Density Data,” Soil Sci. Soc. Am. J., vol. 45, pp. 1023–1030, 1981, doi: https://doi.org/10.2136/sssaj1981.03615995004500060004x.

M. Aubertin, M. Mbonimpa, B. Bussière, and R. P. Chapuis, “A model to predict the water retention curve from basic geotechnical properties,” Can. Geotech. J., vol. 1122, pp. 1104–1122, 2003, doi: 10.1139/T03-054.

G. Torres, “Estimating the Soil–Water Characteristic Curve Using Grain Size Analysis and Plasticity Index,” Universidad Estatal de Arizona, 2011. [Online]. Available: http://medcontent.metapress.com/index/A65RM03P4874243N.pdf%5Cnhttp://repository.asu.edu/attachments/56747/content/TorresHernandez_asu_0010N_10702.pdf

D. G. Fredlund and A. Xing, “Equations for the soil-water characteristic curve,” Can. Geotech. J., vol. 31, no. 4, pp. 533–546, 1994, doi: https://doi.org/10.1139/t94-061.

D. G. Fredlund, A. Xing, and S. Huang, “Predicting the permeability function for unsaturated soils using the soil-water characteristic curve,” Can. Geotech. J., vol. 31, no. 3, pp. 521–532, 1994, doi: 10.1139/t94-062.

R. L. López, “Evaluación del coeficiente de permeabilidad efectivo en depósitos cuaternarios e implicancias en los diseños de presas alto andinas, casos Cusco y Apurimac.,” Universidad Nacional de San Agustín de Arequipa, 2018. [Online]. Available: https://repositorio.unsa.edu.pe/items/a7b1cea4-6eaf-4bbb-9593-8e1a973641bc

N. R. Morgenstern and V. E. Price, “The analysis of the stability of general slip surfaces,” Geotechnique, vol. 15, no. 1, pp. 79–93, 1965, doi: https://doi.org/10.1680/geot.1965.15.1.79.

Published

2025-01-03

How to Cite

[1]
I. Flores Berenguer, O. Jacobo Rodríguez, S. . García Martínez, Y. González Haramboure, and J. . García Tristá, “Effect of permeability on the factor of safety of earthen dams under rainfall”, Ing. y Des., vol. 43, no. 1, pp. 24–43, Jan. 2025.