Evaluation of the quality of the electrical energy supplied by a grid-connected solar photovoltaic plant using machine learning and data mining algorithms
DOI:
https://doi.org/10.14482/inde.43.01.489.326Keywords:
Electrical frequency, harmonic distortion, importance level, power factor, subgroupsAbstract
The presence of photovoltaic solar plants to produce electricity implies the reduction of the use of fossil fuels, and the reduction of polluting emissions. The availability of solar energy depends on weather conditions, so the parameters of the electrical energy to be delivered could be affected. The objective of this research is to present a methodology based on data science for the evaluation of the energy quality of photovoltaic solar plants connected to the grid, considering current standards. It is applied to a 260 kWp plant of the National Institute of Standards and Technology of the United States. The parameters used are total harmonic distortion, voltage fluctuations and unbalance, electrical frequency, and power factor. Almost 100% of the records comply with the limits established by the standards for the parameters, except for power factor, with 63.56%. From the power factor classification model, it was obtained that apparent and active power, and frequency, are the most important variables. From the subgroup discovery algorithm, it was obtained that solar irradiance appears in 40% of the subgroups, and frequency in 50%.
References
Asea Brown Boveri, «Technical Application Paper. Photovoltaic plants-Cutting edge technology. From sun to socket,» https://search.abb.com/library/Download.aspx?DocumentID=9AKK107492A3277&LanguageCode=en&DocumentPartId&Action=Launch, 2019.
C. A. Yajure-Ramírez, «Enfoque multicriterio para la selección óptima de variables explicativas para modelos de pronóstico de la energía eléctrica de plantas solares fotovoltaicas,» Revista Tecnológica ESPOL, vol. 35, nº 3, pp. 84-98, 2023. https://doi.org/10.37815/rte.v35n3.1045.
A. A. Alhussainy y T. S. Alquthami, «Power quality analysis of a large grid-tied solar photovoltaic system,» Advances in Mechanical Engineering, pp. 1-14. DOI: 10.1177/1687814020944670, 2020.
A. Anzalchi, A. Sundararajan, A. Moghadasi y A. Sarwat, «Power Quality and Voltage Profile Analyses of High Penetration Grid-tied Photovoltaics: A Case Study,» IEEE Industry Applications Magazine, p. DOI: 10.1109/MIAS.2019.2923104, 2019.
I. Ibrik, «Power Quality and Performance of Grid-Connected Solar PV System in Palestine,» International Journal of Engineering Research and Technology, pp. 1500-1507, 2019.
J. Cui, H. Siming, Z. Bingbing, Z. Hua, D. Chang, Z. Guofa y M. Bo, «Monitoring and Analysis of Power Quality in Photovoltaic Power Generation System,» de E3S W eb of C onferences ICPRE, 2018.
M. Barreto, A. Guananga, A. Barragán, E. Zalamea y X. Serrano, «Power Quality Analysis of Photovoltaic Systems,» de 21th International Conference on Renewable Energies and Power Quality (ICREPQ’23), 2023.
W. Salem, W. G. Ibrahim, A. M. Abdelsadek y A. A. Nafeh, «Grid connected photovoltaic system impression on power quality of low voltage distribution system,» Cogent Engineering, p. https://doi.org/10.1080/23311916.2022.2044576, 2022.
L.-A. El-Leathey, A. Nedelcu y M. Dorian, «Power Quality Monitoring and Analysis of a Grid-Connected PV Power Plant,» ELECTROTEHNICA, ELECTRONICA, AUTOMATICA (EEA), 2017.
A. Lavanya, J. Divya Navamani, A. Geetha, V. Ganesh, M. Jagabar Sathik, K. Vijayakumar y D. Ravichandran, «Smart energy monitoring and power quality performance based evaluation of 100-kW grid tied PV system,» Heliyon, p. https://doi.org/10.1016/j.heliyon.2023.e17274, 2023.
S. K. Mukhiya and U. Ahmed, Hands-On Exploratory Data Analysis with Python, Birmingham, UK: Packt Publishing Ltd., 2020.
International Electrotechnical Commission, «IEC 61000-4-30 - Técnicas de ensayo y de medida. Métodos de medida de la calidad del suministro,» IEC, Geneva, Switzerland, 2003.
R. C. Dugan, M. F. McGranaghan, S. Santoso y H. W. Beaty, Electrical Power Systems Quality, The McGraw-Hill Companies, 2004.
The Institute of Electrical and Electronics Engineers, «IEEE Std 519 - Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,» IEEE, New York, 2014.
A. Q. Al-Shetwi, M. A. Hannan, K. P. Jern, A. A. Alkahtani y A. E. PG Abas, «Power Quality Assessment of Grid-Connected PV System in Compliance with the Recent Integration Requirements,» Electronics MDPI, p. doi:10.3390/electronics9020366, 2020.
National Electrical Manufacturers Association, «Electric Power Systems and Equipment-Voltage Ratings (60 Hertz),» ANSI, Virginia, USA, 2005.
The Institute of Electrical and Electronics Engineers, «IEEE Std 1547 - Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces,» IEEE, New York, 2018.
International Electrotechnical Commission, «IEC 61727 - Photovoltaic (PV) systems. Characteristics of the utility interface,» IEC, Geneva, Switzerland, 2004.
National Institute of Standards and Technology, «National Institute of Standards and Technology,» 04 Mayo 2023. [En línea]. Available: https://catalog.data.gov/dataset/nist-campus-photovoltaic-pv-arrays-and-weather-station-data-sets-05b4d.
Datasheet, «Datasheet,» 04 Mayo 2023. [En línea]. Available: https://www.datasheets.com/en/part-details/nu-u235f2-sharp-46351940#datasheet.
SolarDesignTool, «SolarDesignTool,» 04 Mayo 2023. [En línea]. Available: http://www.solardesigntool.com/components/inverter-grid-tie solar/PVPowered/137/PVP260kW/specification-data-sheet.html.
B. Ratner, Statistical and Machine-Learning Data Mining - Techniques for Better Predictive Modeling and Analysis of Big Data, Boca Raton, FL: CRC Press Taylor & Francis Group, 2017.
J. VanderPlas, Python Data Science Handbook - Essential Tools for Working with Data, Sebastopol, CA: O’Reilly Media, Inc., 2017.
S. Raschka y V. Mirjalili, Python Machine Learning - Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow, Birmingham: Packt Publishing Ltd., 2017.
A. Lopez-Martinez, J. M. Juarez, M. Campos y B. Canovas-Segura, «VLSD—An Eficient Subgroup Discovery Algorithm Based on Equivalence Classes and Optimistic Estimate,» Algorithms - MDPI, p. https://doi.org/10.3390/a16060274, 2023.
L. W. Rizkallah y N. M. Darwish, «An Analysis of Subgroup Discovery Quality Measures,» JOURNAL OF ENGINEERING AND APPLIED SCIENCE, pp. 109-131, 2019.
M. Meeng y A. Knobbe, «For real: a thorough look at numeric attributes in subgroup discovery,» Data Mining and Knowledge Discovery, pp. 158–212. https://doi.org/10.1007/s10618-020-00703-x, 2021.
D. Cielen, A. D. B. Meysman y M. Ali, Introducing Data Science, Shelter Island, NY: Manning Publications Co., 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Científica Ingeniería y Desarrollo.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.