A resource management system for transmission capacity enhancement in wireless mesh networks
Abstract
With numerous active nodes in an 802.11-based wireless mesh network, operating on longer multi-hop routes, the total transmission capacity is limited and the overall network becomes unpredictable and less reliable. The presented work describes the next steps towards a more efficient resource management of a multi-radio node, in order to enhance the performance in this kind of networks. If non-overlapping channels are used for communication, the system enables an optimal usage of the available 802.11 spectrum. To manage bundles of multiple WLAN links between mesh neighbors, a modified node architecture and a novel middle-layer software module have been created. Hop-to-hop load balancing in a bundle is included in each node. In parallel, the inclusion of a distributed channel assignment protocol is foreseen. Packet scheduling is performed based on a set of pre-defined load balancing modes. The modes introduce awareness of current network conditions and cover a wide variety of requirements on mesh networks, from improved performance to robustness. Further inspiring technologies, like layer 2 forwarding and hop-to-hop priority queuing, have been tailored in the novel architecture. The achievement is a flexible platform that can be used for different purposes, ranging from a commercially oriented mesh backbone to spontaneously setting up wireless emergency networks. A set of simulator-driven measurements outlines the effectiveness of the multi-interface system.Downloads
Published
2016-08-02
How to Cite
[1]
C. Köbel, W. Baluja García, and J. Habermann, “A resource management system for transmission capacity enhancement in wireless mesh networks”, Ing. y Des., vol. 34, no. 2, pp. 370–396, Aug. 2016.
Issue
Section
Articles