Comportamiento mecánico de concretos con sustitución total de agregado grueso natural a partir de residuos de construcción y demolición

Autores/as

  • Robinson Fernando Rua Patiño Universidad Nacional de Colombia
  • Juan Ospina Correa Universidad Nacional de Colombia
  • Francisco Campillo Machado Corporación Universitaria Remington (Colombia)

DOI:

https://doi.org/10.14482/inde.43.02.777.362

Palabras clave:

agregados gruesos reciclados, concretos livianos, concretos reciclados, esfuerzo de compresión, sustitución total de agregados

Resumen

La reutilización de residuos de construcción y demolición (RCD) en concretos ha sido ampliamente investigada, pero persisten preocupaciones sobre su impacto en la respuesta mecánica. Este estudio investiga la resistencia a la compresión de concretos fabricados con agregados gruesos reciclados. Las mezclas se diseñaron de acuerdo con ACI-211.1-91, reemplazando completamente el agregado grueso natural por RCD, utilizando una relación de 3:1 entre ladrillo y concreto reciclado, en tamaños de 3/8" y 1". Se evaluaron diferentes relaciones agua-cemento (0,5 - 0,6 - 0,7). Los resultados indican que la relación 3:1 con un tamaño de 3/8" y una relación agua-cemento de 0,5 mejora la resistencia a la compresión en un 33% en comparación con estudios previos. Este incremento en la resistencia sugiere que el uso de RCD puede producir concretos para el uso de elementos estructurales, contribuyendo al desarrollo de concretos más sostenibles sin comprometer el desempeño mecánico. Los hallazgos de este estudio abren nuevas posibilidades del uso de concretos reemplazados con el 100 % de agregados naturales por RCD, con respuesta mecánica a la compresión funcional.

Citas

L. P. Güereca, “Evaluación comparativa de los impactos ambientales de la producción de clínker con combustible fósil frente a combustible derivado de los residuos municipales.,” Gaceta Instituto de Ingeniería, UNAM, vol. 86, pp. 16–19, 2017.

H. Yuan and L. Shen, “Trend of the research on construction and demolition waste management,” Waste Management, vol. 31, no. 4, pp. 670–679, 2011, https://doi.org/10.1016/j.wasman.2010.10.030.

R. Guo et al., “Global CO 2 uptake by cement from 1930 to 2019,” no. 1, pp. 1791–1805, 2021.

C. Zhang et al., “Life cycle assessment of material footprint in recycling: A case of concrete recycling,” Waste Management, vol. 155, pp. 311–319, Jan. 2023, https://doi.org/10.1016/j.wasman.2022.10.035.

K. Ram, M. Serdar, D. Londono-Zuluaga, and K. Scrivener, “Does carbon footprint reduction impair mechanical properties and service life of concrete,” Materials and Structures/Materiaux et Constructions, vol. 56, no. 1, Feb. 2023, https://doi.org/10.1617/s11527-022-02090-9.

H. Wu, J. Zuo, H. Yuan, G. Zillante, and J. Wang, “Resources, Conservation & Recycling A review of performance assessment methods for construction and demolition waste management,” Resour Conserv Recycl, vol. 150, no. June, p. 104407, 2019, https://doi.org/10.1016/j.resconrec.2019.104407.

D. Cheriyan and J. Choi, “A review of research on particulate matter pollution in the construction industry,” J Clean Prod, vol. 254, p. 120077, 2020, https://doi.org/10.1016/j.jclepro.2020.120077.

H. Le and Q. Bui, “Recycled aggregate concretes – A state-of-the-art from the microstructure to the structural performance,” Constr Build Mater, vol. 257, p. 119522, 2020, https://doi.org/10.1016/j.conbuildmat.2020.119522.

W.-L. Huang, D.-H. Lin, N.-B. Chang, and K.-S. Lin, “Recycling of construction and demolition waste via a mechanical sorting process.” [Online]. Available: www.elsevier.com/locate/resconrec.

N. Cerqueira, A. Rangel, G. De Azevedo, and F. Redentor, “Evaluation of the Quality of Concrete with Waste of Construction and Demolition,” no. January 2018, https://doi.org/10.1007/978-3-319-72484-3.

A. Cardoza y H. A. Colorado, “Geopolymers Made of Construction and Demolition Waste: Current Trends and Perspectives,” no. Apr. 2022, https://doi.org/10.1007/978-3-030-92563-5.

M. Martín-Morales, M. Zamorano, A. Ruiz-Moyano, y I. Valverde-Espinosa, “Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08,” Constr. Build. Mater., vol. 25, no. 2, pp. 742–748, Feb. 2011, https://doi.org/10.1016/j.conbuildmat.2010.07.012.

G. M. Kondolf, “Geomorphic and environmental effects of instream gravel mining,” 1994, https://doi.org/10.1016/0169-2046(94)90021-3.

A. Kowalska y W. Sobczyk, “Negative and Positive Effects of the Exploitation of Gravel-Sand,” In?ynieria Mineralna, vol. 15, no. 1, pp. 105-109, 2014. [Online]. Available: https://www.infona.pl/resource/bwmeta1.element.baztech-9175fff3-c319-45c8-a91b-f54cbe7f63cc/tab/summary. [Accessed: 18-Jul-2024].

E. Q. R. Santiago, P. R. L. Lima, M. B. Leite, y R. D. Toledo Filho, “Mechanical behavior of recycled lightweight concrete using EVA waste and CDW under moderate temperature Comportamento mecânico sob temperatura moderada de concreto leve reciclado produzido com resíduo de EVA e RCD,” 2009. [Online]. Available: https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=2175321. [Accessed: 18-Jul-2024].

J. S. González, F. L. Gayarre, C. L. C. Pérez, P. S. Ros, and M. A. S. López, “Influence of recycled brick aggregates on properties of structural concrete for manufacturing precast prestressed beams,” Constr Build Mater, vol. 149, pp. 507–514, Sep. 2017, https://doi.org/10.1016/j.conbuildmat.2017.05.147.

M. C. S. Nepomuceno, R. A. S. Isidoro, and J. P. G. Catarino, “Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste,” Constr Build Mater, vol. 165, pp. 284–294, Mar. 2018, https://doi.org/10.1016/j.conbuildmat.2018.01.052.

M. Bravo, J. De Brito, J. Pontes, and L. Evangelista, “Durability performance of concrete with recycled aggregates from construction and demolition waste plants,” Constr Build Mater, vol. 77, pp. 357–369, Feb. 2015, https://doi.org/10.1016/j.conbuildmat.2014.12.103.

M. Bravo, J. De Brito, J. Pontes, and L. Evangelista, “Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants,” J Clean Prod, vol. 99, pp. 59–74, Jul. 2015, https://doi.org/10.1016/j.jclepro.2015.03.012.

R. V. Silva, J. De Brito, and R. K. Dhir, “Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes,” Construction and Building Materials, vol. 105. Elsevier Ltd, pp. 400–415, Feb. 15, 2016. https://doi.org/10.1016/j.conbuildmat.2015.12.171.

S. M. Jian and B. Wu, “Compressive behavior of compound concrete containing demolished concrete lumps and recycled aggregate concrete,” Constr Build Mater, vol. 272, Feb. 2021, https://doi.org/10.1016/j.conbuildmat.2020.121624.

H. Sasanipour and F. Aslani, “Durability assessment of concrete containing surface pretreated coarse recycled concrete aggregates,” Constr Build Mater, vol. 264, Dec. 2020, https://doi.org/10.1016/j.conbuildmat.2020.120203.

H. Sasanipour and F. Aslani, “Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates,” Constr Build Mater, vol. 236, Mar. 2020, https://doi.org/10.1016/j.conbuildmat.2019.117540.

C. S. Poon, Z. H. Shui, and L. Lam, “Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates,” Constr Build Mater, vol. 18, no. 6, pp. 461–468, Jul. 2004, https://doi.org/10.1016/j.conbuildmat.2004.03.005.

M. Aamer Rafique Bhutta, N. Hasanah, N. Farhayu, M. W. Hussin, M. B. M. Tahir, and J. Mirza, “Properties of porous concrete from waste crushed concrete (recycled aggregate),” Constr Build Mater, vol. 47, pp. 1243–1248, 2013, https://doi.org/10.1016/j.conbuildmat.2013.06.022.

F. Yates, “The design and analysis of factorial experiments”. Harpenden: Imperial Bureau of Soil Science, 1937, https://doi.org/10.1016/0169-2046(94)90021-3.

R. Dunford, Q. Su, y E. Tamang, “The Pareto Principle,” 2014. [Online]. Available: http://hdl.handle.net/10026.1/14054. https://doi.org/10.1007/978-3-030-92563-5.

N. Langrené and X. Warin, “Fast multivariate empirical cumulative distribution function with connection to kernel density estimation,” Comput Stat Data Anal, vol. 162, Oct. 2021, https://doi.org/10.1016/j.csda.2021.107267.

W. Chantarangsi, W. Liu, F. Bretz, S. Kiatsupaibul, A. J. Hayter, and F. Wan, “Normal probability plots with confidence,” Biometrical Journal, vol. 57, no. 1, pp. 52–63, Jan. 2015, https://doi.org/10.1002/bimj.201300244.

D. E. Dixon et al., “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91) Reapproved 1997 Reported by ACI Committee 211 Chairman, Subcommittee A,” 1991. [Online]. Available: https://www.concrete.org/Portals/0/Files/PDF/Previews/211.1-22_preview.pdf. https://doi.org/10.14359/12264.

“Designation: C33/C33M ? 23 Standard Specification for Concrete Aggregates,” ASTM International, 2023. https://doi.org/10.1520/C0033_C0033M-23.

“Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate,” ASTM International, 2015. https://doi.org/10.1520/C0127-15.

“Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” ASTM International, 2019. https://doi.org/10.1520/C0136_C0136M-19.

J. D. Ospina-Correa, E. Mejía-Restrepo, C. M. Serna-Zuluaga, A. Posada-Montoya, J. G. Osorio-Cachaya, J. A. Tamayo-Sepúlveda, and J. A. Calderón-Gutiérrez, "Process mineralogy of refractory gold ore in thiosulfate solutions," Hydrometallurgy, vol. 180, pp. 151-160, 2018, doi: 10.1016/j.hydromet.2018.10.019.

A. Katz, “Properties of concrete made with recycled aggregate from partially hydrated old concrete,” Cem Concr Res, vol. 33, no. 5, pp. 703–711, May 2003, https://doi.org/10.1016/S0008-8846(02)01033-5.

P. R. L. Lima, M. B. Leite, and E. Q. R. Santiago, “Recycled lightweight concrete made from footwear industry waste and CDW,” Waste Management, vol. 30, no. 6, pp. 1107–1113, Jun. 2010, https://doi.org/10.1016/j.wasman.2010.02.007.

D. Wang et al., “Mechanical performance of recycled aggregate concrete in green civil engineering: Review,” Case Studies in Construction Materials, vol. 19, Dec. 2023, https://doi.org/10.1016/j.cscm.2023.e02384.

J. W. Bullard, J. G. Hagedorn, M. T. Ley, Q. Hu, W. N. Griffin, y J. E. Terrill, “A critical comparison of 3D experiments and simulations of tricalcium silicate hydration,” Journal of the American Ceramic Society, vol. 101, no. 4, pp. 1453–1462, Mar. 2018, https://doi.org/10.1111/jace.15323.

F. Zhou, G. Pan, R. Mi, and M. Zhan, “Improving the properties of concrete using in situ-grown C-S-H,” Constr Build Mater, vol. 276, Mar. 2021, https://doi.org/10.1016/j.conbuildmat.2020.122214.

Descargas

Publicado

2025-07-01

Cómo citar

[1]
R. F. Rua Patiño, J. Ospina Correa, y F. Campillo Machado, «Comportamiento mecánico de concretos con sustitución total de agregado grueso natural a partir de residuos de construcción y demolición», Ing. y Des., vol. 43, n.º 2, pp. 238–255, jul. 2025.

Número

Sección

Artículos