Analysis and Design of a Long Distance Distributed Optical Sensor Network Based on FBG

Authors

DOI:

https://doi.org/10.14482/inde.41.01.612.086

Keywords:

Bragg Networks, Optical Fiber, Optical Networks, Optical Sensors, Telecommunications

Abstract

Optical fiber has been widely used as a transmission media for data communication networks for many years. However, considering the broad advantages offered by fiber optics, research projects in this  area go beyond data transmission; among the topics that can be found in this field are photonic sensors.

Some characteristics decisive now in promoting the research of photonic sensors are the unique advantages that they offer, such as immunity to electromagnetic interference, its low weight and volume, and long lifetime, among others.

This paper presents the design and analysis of a distributed optical sensors network using the largest network topology in the country, called the National Optical Fiber Project (PNFO).

References

M. Götten, S. Lochmann, A. Ahrens, E. Lindner, J. Vlekken, and J. Van Roosbroeck, “A CDM-WDM Interrogation Scheme for Massive Serial FBG Sensor Networks,” in IEEE Sensors Journal, vol. 22, nº. 12, pp. 11290-11296, 2022. doi: 10.1109/JSEN.2021.3070446.

R. A. Pérez-Herrera and M. López-Amo, “Fiber optic sensor networks,” Optical Fiber Technology, vol. 19, n.° 6, pp. 689-699, 2013. doi:10.1016/j.yofte.2013.07.014.

U. Senkans, J. Braunfelds, S. Spolitis, and V. Bobrovs, “Research of FBG Optical Sensors Network and Precise Peak Detection,” 2018 Advances in Wireless and Optical Communications (RTUWO), 2018, pp. 139-143. doi: 10.1109/RTUWO.2018.8587859.

I. Iturri Gil, “Diseño y caracterización de nuevas topologías de redes de sensores multiplexados en longitud de onda mediante láseres de fibra con emisión multilínea”, Universidad Pública de Navarra, Pamplona, España, 2014.

P. Salgado, "Method of calibration for fiber Bragg grating interrogators," Óptica Pura y Aplicada, vol. 45, n.º 3, pp. 361-368, 2012. doi:10.7149/opa.45.3.361

J. D. Causado-Bulevas, N. D. Gómez-Cardona, E. González-Valencia, D. Jessie, and P. Torres, “Applications Of Fiber Bragg Gratings Sensors In Civil Structures,” Revista Colombiana de Física, vol. 43 n.º 3, pp. 929-932 , 2011.

F. E. Barón Moreno, "Diseño de un sistema de medición de temperatura para líneas de transmisión y distribución de energía utilizando sensores ópticos basados en redes de difracción de Bragg," Universidad Nacional de Colombia, Bogotá, Colombia, 2019.

O. A. Sosa Puerto, "Medición de variaciones espacio - temporales de la temperatura del agua en su interacción superficie y el subsuelo utilizando redes de difracción de Bragg en un tramo de un arroyo de montaña colombiano," Universidad Nacional de Colombia, Bogotá, Colombia, 2020.

J. J. Bustamante Pasmiño, “Diseño de una red de fibra óptica para el monitoreo de deslizamientos de tierra por medio de un sistema de detección FBG para la vía LojaZamora,” trabajo de titulación de ingeniero en electrónica y telecomunicaciones, UTPL, Loja, 2020.

C. Carmona-Rodriguez, S. Castrillón, J. Navarro, S. Orrego y F. Amaya Fernández, "Red de sensores de fibra óptica para la prevención de desastres", Revista Iinvestigaciones Aaplicadas , vol. 9, n.º 1, pp. 30-36, 2015. doi: 10.18566/ria.v09n01.a06.

Ministerio de Tecnologías de la Información y las Comunicaciones. “Proyecto Nacional de Fibra Óptica”. Mintic.gov.co. https://mintic.gov.co/portal/vivedigital/612/w3-propertyvalue-647.html. [Accesed: July 29, 2022].

Azteca Comunicaciones. “Proyecto Nacional de Fibra Óptica”. Aztecacomunicaciones.com. https://aztecacomunicaciones.com/content/azteca/pnfo/. [Accesed: May 2022].

R. Kashyap, “Theory of Fiber Bragg Gratings,” in Fiber Bragg Gratings (Second Edition), Academic Press, 2010, pp. 119-187. doi: 10.1016/B978-0-12-372579-0.00004-1. 4-1.

R. Kashyap, “Apodization of Fiber Gratings,” in Fiber Bragg Gratings (Second Edition), Academic Press, 2010, pp. 189-215. doi: 10.1016/B978-0-12-372579-0.00005-3.

Y. K. Muñoz Nuñez, "Análisis Y Diseño De Una Red De Sensores Ópticos distribuidos de larga distancia basada en red de difracción de Bragg," Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, 2017.

K. Vilcane, R. Murnieks, M. Aleksejeva, J. Braunfelds, I. Lyashuk, and V. Bobrovs, “Integration of FBG Optical Sensor Network in DWDM-PON Transmission System,” 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall), 2019, pp. 1168-1174. doi: 10.1109/PIERS-Fall48861.2019.9021808.

D. J. Cooper, T. Coroy, and P. W. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays," Applied Optics, vol. 40, n.° 16, pp. 2643-2654, 2001.

S. Abbenseth y S. I. Lochmann, "Distinct enlargement of network size or measurement speed for serial FBG sensor networks utilizing SIK-DS-CDMA," Journal of Physics: Conference Series, vol. 15, pp. 149-154, 2005. doi: 10.1088/1742-6596/15/1/025

Y. H. Huang, Chao Lu, P. K. A. Wai, and H. Y. Tam, "Large-scale FBG sensors utilizing code division multiplexing," 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, pp. 1-2. doi: 10.1109/CLEO.2008.4551324

P. Zhang, "Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg-grating-based sensor system," Optical Engineering, vol. 42, n.º 6, p. 1597, 2003. doi: 10.1117/1.1571061.

A. D. Kersey et al., "Fiber grating sensors," Journal of Lightwave Technology, vol. 15, nº. 8, pp. 1442-1463, Aug. 1997. doi: 10.1109/50.618377.

H. Heininger, "Interrogation of Optical Fiber Sensors for Civil Engineering Applications using Widely Tunable Laser," Brno University of Technology, 2013.

Published

2023-01-06

How to Cite

[1]
Y. K. Muñoz Nuñez and G. A. Puerto Leguizamón, “Analysis and Design of a Long Distance Distributed Optical Sensor Network Based on FBG”, Ing. y Des., vol. 41, no. 1, pp. 69–93, Jan. 2023.