Treatment of indoor air quality through the use of ornamental plants

Authors

DOI:

https://doi.org/10.14482/inde.42.01.741.369

Keywords:

indoor environment, public health, particulate matter, air pollution, phyoremediation

Abstract

This work is proposed to evaluate the use of phytoremediation as a technique to eliminate the particulate matter lower than 10 and 2;5 µm (PM10 y PM2;5; respectively) present in indoor environments due to the associated adverse effects related to the public health damage and the population performance reduction at work level. For this purpose; arrangements made up of 6 ornamental plants readily available were used; such as the green miami (Epipremnum aureum); the aloe (Aloe vera); the peace flower (Spathiphyllum sp.); the curly fern (Nephrolepis exaltata); the syngonium (Syngonium podophyllum) and mother-in-law's tongue (Sansevieria trifasciata); which were installed in different dependencies of a higher education institution; where the level of PM2;5 and PM10 was previously determined. Once the arrangements were implemented; these measurements were averaged and compared with the data recorded to estimate their PM2;5 and PM10 removal percentage. In general; the positive effect associated with the implementation of the selected ornamental arrangements was evidenced; especially that one constituted by 2 individuals of Nephrolepis exaltata; in comparison with the dependencies used as a control; for the elimination of indoor PM. Therefore; phytoremediation may be considered a solution to the environmental problem related to indoor air quality.

References

W. Han, Z. Xu, X. Hu, R. Cao, Y. Wang, J. Jin, J. Wang, T. Yang, Q. Zeng, J. Huang y G. Li, “Air pollution, greenness and risk of overweight among middle-aged and older adults: A cohort study in China”, Environmental Research, vol. 216, pp. 114372, 2023. https://doi.org/10.1016/j.envres.2022.114372.

Organización Mundial de la Salud (La OMS) publica estimaciones nacionales sobre la exposición a la contaminación del aire y sus repercusiones para la salud. Ginebra: Organización Mundial de la Salud, 2016. [En línea]. Disponible en: https://www.who.int/es/news-room/detail/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact.

S. Chaabouni, N. Zghidi y M.B. Mbarek, “On the causal dynamics between CO2 emissions, health expenditures and economic growth”, Sustainable Cities and Society, vol. 22, pp. 184-191, 2021. https://doi.org/10.1016/j.scs.2016.02.001.

J.C.B. Andrade, K.E.C. Gil y J.E.T. Giraldo, “Desarrollo de una herramienta computacional para evaluar la diversificación energética de los sistemas de transporte en Colombia”, Revista Científica Ingeniería y Desarrollo, vol. 40, nº. 2, pp. 166-186, 2022. https://dx.doi.org/10.14482/inde.40.02.620.986.

L.A. Rodríguez-Camargo, R.J. Sierra-Parada y L.C. Blanco-Becerra, “Análisis espacial de las concentraciones de PM2,5 en Bogotá según los valores de las guías de la calidad del aire de la Organización Mundial de la Salud para enfermedades cardiopulmonares, 2014-2015”, Biomédica, vol. 40, nº. 1, pp. 137-152, 2020. https://doi.org/10.7705/biomedica.4719.

B.X.Y. Lee, T. Hadibarata y A. Yuniarto, “Phytoremediation mechanisms in air pollution control: a review”, Water, Air, & Soil Pollution, vol. 231, nº. 8, pp. 1-13, 2020. https://doi.org/10.1007/s11270-020-04813-6.

Ministerio de Ambiente y Desarrollo Sostenible, “Resolución 2254 de 2017, por la cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones”, República de Colombia, 2017.

Departamento Nacional de Planeación (DNP), “Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones”. Bogotá. Colombia, 2017. [En línea]. Disponible en: https://www.dnp.gov.co/Paginas/Los-costos-en-la-salud-asociados-a-la-degradaci%C3%B3n-ambiental-en-Colombia-ascienden-a-%2420,7-billones-.aspx.

W. Yang, D. Pudasainee, R. Gupta, W. Li, B. Wang y L. Sun, “An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors”, Fuel Processing Technology, p. 106657, 2020. https://doi.org/10.1016/j.fuproc.2020.106657.

A.L. Goodkind, C.W. Tessum, J.S. Coggins, J.D. Hill y J.D. Marshall, “Fine-scale damage estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of emissions”, Proceedings of the National Academy of Sciences, vol. 116, no. 18, pp. 8775-8780, 2019. https://doi.org/10.1073/pnas.1816102116.

M. ?cibor, B. Balcerzak, A. Galbarczyk, N. Targosz y G. Jasienska, “Are we safe inside? Indoor air quality in relation to outdoor concentration of PM10 and PM2.5 and to characteristics of homes”, Sustainable Cities and Society, p. 101537, 2022. https://doi.org/10.1016/j.scs.2019.101537.

S. Pallarés, E. Gómez, A. Martínez y M.M. Jordán, “The relationship between indoor and outdoor levels of PM10 and its chemical composition at schools in a coastal region in Spain”, Heliyon, vol. 5, nº. 8, p. e02270, 2019. https://doi.org/10.1016/j.heliyon.2019.e02270.

P. Agarwal, M. Sarkar, B. Chakraborty y T. Banerjee, “Phytoremediation of air pollutants: prospects and challenges”, en Phytomanagement of Polluted Sites, Netherlands, Elsevier, 2021, pp. 221-241.

D. Siswanto, B.H. Permana, C. Treesubsuntorn, y P. Thiravetyan, “Sansevieria trifasciata and Chlorophytum comosum botanical biofilter for cigarette smoke phytoremediation in a pilot-scale experiment - Evaluation of multi-pollutant removal efficiency and CO2 emission”, Air Quality, Atmosphere & Health, vol. 13, nº. 1, pp. 109-117, 2021. https://doi.org/10.1007/s11869-019-00775-9.

Y. Yang, Y. Su y S. Zhao, “An efficient plant–microbe phytoremediation method to remove formaldehyde from air”, Environmental Chemistry Letters, vol. 18, nº. 1, pp. 197-206, 2020. https://doi.org/10.1007/s10311-019-00922-9.

B. Zhang, D. Cao y S. Zhu, “Use of Plants to Clean Polluted Air: A Potentially Effective and Low-Cost Phytoremediation Technology”, BioResources, vol. 15, nº. 3, pp. 4650-4654, 2020.

K.A.J. Begum y R. Gopinath, “Development of step-wise ranking for indoor plants as indoor air pollutant purifiers”. Austin Environmental Sciences, vol. 2, no. 1, 1018, 2017.

A. Navarro, "Estudio sobre la variación de PM10, PM2.5 y la fracción gruesa (PM10 - PM2.5) en Juriquilla, Querétaro y su relación con variables meteorológicas", TESIUNAM, 2018.

Sistema de Alerta Temprana de Medellín y el Valle de Aburrá (SIATA). Disponible en: https://siata.gov.co/siata_nuevo/ (Retrieved 30/09/2019).

C.A. Echeverri y G.J. Maya, “Relación entre las partículas finas (PM2.5) y respirables (PM10) en la ciudad de Medellín”, Revista Ingenierías Universidad de Medellín, vol. 7, nº. 12, pp. 23-42, 2008.

N. Sahanavin, T. Prueksasit y K. Tantrakarnapa, “Relationship between PM10 and PM2.5 levels in high-traffic area determined using path analysis and linear regression”, Journal of Environmental Sciences, vol. 69, pp. 105-114, 2018. https://doi.org/10.1016/j.jes.2017.01.017.

B. Giechaskiel, A. Joshi, L. Ntziachristos y P. Dilara, “European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: A review”, Catalysts, vol. 9, nº. 7, 586, 2019. https://doi.org/10.3390/catal9070586.

L.A. Arévalo y K.M. Jara, “Determinación del material particulado PM2, 5 y PM10 en el terminal terrestre de Latacunga, provincia de Cotopaxi”, tesis de grado. Universidad Técnica de Cotopaxi (UTC), 2022.

R.E. Rojano, L.C. Angulo y G. Restrepo, “Niveles de partículas suspendidas totales (PST), PM10 y PM2. 5 y su relación en lugares públicos de la Ciudad Riohacha, Caribe colombiano”, Información Tecnológica, vol. 24, nº. 2, pp. 37-46, 2013. http://dx.doi.org/10.4067/S0718-07642013000200006.

N. Rojas y B. Galvis, “Relationship between PM2.5 and PM10 in Bogotá”, Revista de Ingeniería, vol. 22, pp. 54-60, 2005.

T. Pettit, P.J. Irga, P. Abdo y F.R. Torpy, “Do the plants in functional green walls contribute to their ability to filter particulate matter?”, Building and Environment, vol. 125, pp. 299-307, 2022. https://doi.org/10.1016/j.buildenv.2017.09.004.

Association of Public Air Laboratories, “Environmental Laboratories and Indoor Air Testing: A Primer”, United States, 2015.

T. Ugranli, M. Toprak, G. Gursoy, A.H. Cimrin y S.C. Sofuoglu, “Indoor environmental quality in chemistry and chemical engineering laboratories at Izmir Institute of Technology”, Atmospheric Pollution Research, vol. 6, nº. 1, pp. 147-153, 2018. https://doi.org/10.5094/APR.2018.017.

M.J.M. Davis, F. Ramírez y M.E. Pérez, “More than just a Green Façade: vertical gardens as active air conditioning units”, Procedia Engineering, vol. 145, pp. 1250-1257, 2019. https://doi.org/10.1016/j.proeng.2016.04.161.

M.J.M. Davis, M.J. Tenpierik, F.R. Ramírez y M.E. Pérez, “More than just a Green Facade: The sound absorption properties of a vertical garden with and without plants”, Building and Environment, vol. 4116, pp. 64-72, 2020. https://doi.org/10.1016/j.buildenv.2017.01.010.

Published

2024-01-02

How to Cite

[1]
A. Rubio Clemente and J. S. Martínez Serna, “Treatment of indoor air quality through the use of ornamental plants”, Ing. y Des., vol. 42, no. 1, pp. 23–46, Jan. 2024.