Identificación Basada en Umbrales de la Distorsión No Gaussiana en Constelaciones Ópticas Usando Métricas de Validez de Agrupamiento

Autores/as

DOI:

https://doi.org/10.14482/inde.44.01.985.544

Palabras clave:

Agrupamiento, k-means, fuzzy c-means, Gustafson-Kessel, distorsión no-Gaussiana, ruido de fase no lineal

Resumen

En este trabajo, los autores demuestran experimentalmente una estrategia de demodulación basada en umbrales para constelaciones 16-QAM y 4+12 PSK afectadas por distorsiones no gaussianas, utilizando índices de validez de agrupamiento como métrica de decisión. Al aplicar fragmentación mediante algoritmos de clustering—k-means, fuzzy c-means (FCM) y Gustafson-Kessel FCM (GK-FCM)—lograron identificar distorsiones elipsoidales en los clústeres externos de símbolos de datos y seleccionar dinámicamente estrategias de demodulación apropiadas. El enfoque propuesto, basado en agrupamiento, no requiere correcciones de desbalance en las ramas IQ ni de desfase, ya que redefine las regiones de decisión en función de los centroides de los clústeres. Los autores introducen el uso de índices de validez de agrupamiento (Coeficiente de Partición, Separación, Xie y Beni, y el Índice de Dunn) para caracterizar los niveles de distorsión de los símbolos en los diagramas de constelación y establecer umbrales de desempeño. La combinación de DI y XB proporciona un criterio para definir el umbral de distorsión no gaussiana. En particular, XB ? 10.7 y DI ? 0.015 pueden servir como indicadores empíricos de que la constelación en sistemas ópticos de radio sobre fibra (RoF) ha transitado hacia un régimen más estructurado en el que los centroides de clúster son utilizados para la demodulación. Los resultados experimentales muestran que, en condiciones de alto ruido (OSNR = 16 dB), el índice XB alcanza su valor mínimo, confirmando la sensibilidad del método a la distorsión inducida por ruido. Se observaron mejoras en la relación señal-ruido óptica (OSNR) de hasta 2.1 dB para 16-QAM y 0.7 dB para 4+12 PSK en un umbral de BER de 10?² en una transmisión sobre 78.8 km de fibra. La combinación de los índices DI y XB proporciona un criterio sólido para definir el umbral de distorsión no gaussiana. Estos hallazgos experimentales sugieren que las métricas de validez de agrupamiento pueden servir como umbrales efectivos para la demodulación adaptativa, permitiendo la identificación en tiempo real de distorsiones no gaussianas en sistemas de comunicación RoF.

Referencias

A. Dogra, R. K. Jha, and S. Jain, “A Survey on Beyond 5G Network With the Advent of 6G: Architecture and Emerging Technologies,” IEEE Access, vol. 9, pp. 67512–67547, 2021, doi: 10.1109/ACCESS.2020.3031234.

D. Marpaung, “High dynamic range analog photonic links design and simulation,” University of Twente, 2021.

J. Liu, X. Wu, C. Huang, H. K. Tsang, and C. Shu, “Compensation of Dispersion-Induced Power Fading in Analog Photonic Links by Gain-Transparent SBS,” IEEE Photonics Technol. Lett., vol. 30, no. 8, pp. 688–691, 2018, doi: 10.1109/LPT.2018.2812188.

V. A. Thomas, M. El-Hajjar, and L. Hanzo, “Performance Improvement and Cost Reduction Techniques for Radio Over Fiber Communications,” IEEE Commun. Surv. Tutorials, vol. 17, no. 2, pp. 627–670, 2015, doi: 10.1109/COMST.2015.2394911.

L. Manoliu, D. Wrana, B. Schoch, S. Haussmann, A. Tessmann, and I. Kallfass, “Frequency and Phase Investigation of the Local Oscillator Offset in a W-Band Satellite Communication Link,” in 2023 53rd European Microwave Conference (EuMC), 2023, pp. 360–363, doi: 10.23919/EuMC58039.2023.10290372.

L. Li, G. Zhang, X. Zheng, S. Li, H. Zhang, and B. Zhou, “Phase Noise Suppression for Single-Sideband Modulation Radio-Over-Fiber Systems Adopting Optical Spectrum Processing,” IEEE Photonics Technol. Lett., vol. 25, no. 11, pp. 1024–1026, 2013, doi: 10.1109/LPT.2013.2258901.

P. Li et al., “Multi-IF-Over-Fiber Based Mobile Fronthaul With Blind Linearization and Flexible Dispersion Induced Bandwidth Penalty Mitigation,” J. Light. Technol., vol. 37, no. 4, pp. 1424–1433, 2019, [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-37-4-1424.

Y. Han, S. Yu, M. Li, J. Yang, and W. Gu, “An SVM-Based Detection for Coherent Optical APSK Systems With Nonlinear Phase Noise,” IEEE Photonics J., vol. 6, no. 5, pp. 1–10, 2014, doi: 10.1109/JPHOT.2014.2357424.

Y. Cui et al., “Overcoming Chromatic-Dispersion-Induced Power Fading in ROF Links Employing Parallel Modulators,” IEEE Photonics Technol. Lett., vol. 24, no. 14, pp. 1173–1175, 2012, doi: 10.1109/LPT.2012.2192422.

L. Pakala and B. Schmauss, “Two stage extended Kalman filtering for joint compensation of frequency offset, linear and nonlinear phase noise and amplitude noise in coherent QAM systems,” in 2017 19th International Conference on Transparent Optical Networks (ICTON), 2017, pp. 1–4, doi: 10.1109/ICTON.2017.8024972.

D. L. N. S. Inti, “Time-Varying Frequency Selective IQ Imbalance Estimation and Compensation,” Virginia Polytechnic Institute and State University, 2017.

M. Solarte-Sanchez, D. Marquez-Viloria, A. E. Castro-Ospina, E. Reyes-Vera, N. Guerrero-Gonzalez, and J. Botero-Valencia, “m-QAM Receiver Based on Data Stream Spectral Clustering for Optical Channels Dominated by Nonlinear Phase Noise,” Algorithms, vol. 17, no. 12. 2024, doi: 10.3390/a17120553.

D. Wang et al., “KNN-based detector for coherent optical systems in presence of nonlinear phase noise,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016, pp. 1–3.

J. J. Granada Torres, S. Varughese, S. E. Ralph, A. M. Cárdenas Soto, and N. G. González, “Clustering in Short Time Windows for Nonsymmetrical Demodulation in 16QAM Overlapped WDM Channels,” in Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS), 2017, p. SpM3F.2, doi: 10.1364/SPPCOM.2017.SpM3F.2.

A. F. Eduardo, G. T. Jhon James, C. S. Ana María, and G. G.-O. F. T. Neil, “Radio-over-Fiber Signal Demodulation in the Presence of Non-Gaussian Distortions based on Subregion Constellation Processing,” Opt. Fiber Technol., vol. 45IS–6, pp. 741–759, 2019, doi: https://doi.org/10.1016/eduardo.yofte.2019.08.004.

D. Lu et al., “100Gb/s PAM-4 VCSEL Driver and TIA for Short-Reach 400G-1.6T Optical Interconnects,” in 2021 IEEE Asia Pacific Conference on Circuit and Systems (APCCAS), 2021, pp. 253–256, doi: 10.1109/APCCAS51387.2021.9687808.

X. Guan, A. Omidi, M. Zeng, and L. A. Rusch, “Experimental Demonstration of a Constellation Shaped via Deep Learning and Robust to Residual-Phase-Noise,” in Conference on Lasers and Electro-Optics, 2022, p. SW4E.2, doi: 10.1364/CLEO_SI.2022.SW4E.2.

F. Ali, H. Afsar, A. Alshamrani, and A. Armghan, “Machine learning-based mitigation of thermal and nonlinear impairments in optical communication grids,” Opt. Laser Technol., vol. 182, p. 112090, 2025, doi: https://doi.org/10.1016/j.optlastec.2024.112090.

A. Kakkar et al., “Impact of local oscillator frequency noise on coherent optical systems with electronic dispersion compensation,” Opt. Express, vol. 23, no. 9, pp. 11221–11226, 2015, doi: 10.1364/OE.23.011221.

J. Zhang, M. Gao, W. Chen, and G. Shen, “Non-Data-Aidedk-Nearest Neighbors Technique for Optical Fiber Nonlinearity Mitigation,” J. Light. Technol., vol. 36, no. 17, pp. 3564–3572, 2018, doi: 10.1109/JLT.2018.2837689.

J. M. Cebrian, B. Imbernón, J. Soto, and J. M. Cecilia, “Evaluation of Clustering Algorithms on HPC Platforms,” Mathematics, vol. 9, no. 17. 2021, doi: 10.3390/math9172156.

D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy covariance matrix,” in 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, 1978, pp. 761–766, doi: 10.1109/CDC.1978.268028.

J. Lasserre, F. Ruiz, and T. Spina, “A double?suppressed possibilistic fuzzy Gustafson–Kessel clustering algorithm (DS?PFGK),” Knowledge-Based Syst., vol. 275, p. 110736, 2023, doi: 10.1016/j.knosys.2023.110736.

D.-W. Kim and K. H. Lee, “A new validity measure for fuzzy c-means clustering.” 2024, doi: 10.48550/arXiv.2407.06774.

P. Ghelfi, A. Bogoni, E. Avendaño Fernández, G. Serafino, A. M. Cardenas Soto, and N. Guerrero Gonzalez, “Machine Learning Techniques to Mitigate Nonlinear Phase Noise in Moderate Baud Rate Optical Communication Systems,” Y. (Cindy) Yi, Ed. Rijeka: IntechOpen, 2019.

B. Balasko, J. Abonyi, and B. Feil, “MATLAB files for ‘Manual for Fuzzy Clustering and Data Analysis Toolbox (For Use with Matlab).’” Jul. 07, 2014.

L. Vendramin, M. C. Naldi, and R. J. G. B. Campello, “Fuzzy Clustering Algorithms and Validity Indices for Distributed Data BT - Partitional Clustering Algorithms,” M. E. Celebi, Ed. Cham: Springer International Publishing, 2015, pp. 147–192.

E. A. Fernández, J. J. GranadaTorres, A. M. Cárdenas Soto, and N. G. González, “Geometric Constellation Shaping with Demodulation based-on Clustering to mitigate Phase-Noise in Radio-over-Fiber Systems,” in Latin America Optics and Photonics Conference, 2018, p. Tu5E.3, doi: 10.1364/LAOP.2018.Tu5E.3.

T. Zhao, A. Nehorai, and B. Porat, “K-means clustering-based data detection and symbol-timing recovery for burst-mode optical receiver,” IEEE Trans. Commun., vol. 54, no. 8, pp. 1492–1501, 2006, doi: 10.1109/TCOMM.2006.878840.

D. Wang et al., “Intelligent constellation diagram analyzer using convolutional neural network-based deep learning,” Opt. Express, vol. 25, no. 15, pp. 17150–17166, 2017, doi: 10.1364/OE.25.017150.

R. T. Jones et al., “Geometric Constellation Shaping for Fiber Optic Communication Systems via End-to-end Learning,” Oct. 2018, Accessed: Apr. 16, 2019. [Online]. Available: http://arxiv.org/abs/1810.00774.

M. A. Amirabadi, S. A. Nezamalhosseini, M. H. Kahaei, and L. R. Chen, “A Survey on Machine and Deep Learning for Optical Communications.” 2024, [Online]. Available: https://arxiv.org/abs/2412.17826.

Descargas

Publicado

2025-01-05

Número

Sección

Artículos

Cómo citar

[1]
“Identificación Basada en Umbrales de la Distorsión No Gaussiana en Constelaciones Ópticas Usando Métricas de Validez de Agrupamiento”, Ing. y Des., vol. 44, no. 1, pp. 130–149, Jan. 2025, doi: 10.14482/inde.44.01.985.544.