Una propuesta metodológica para la evaluación de la condición en sistemas de almacenamiento de energía con baterías (BESS) utilizando KPIs
DOI:
https://doi.org/10.14482/inde.40.02.627.001Palabras clave:
Indicadores Claves de Rendimiento KPIs, Redes inteligentes, Sistema de Almacenamiento con Baterías BESSResumen
Las baterías de iones de litio se han utilizado en diversas aplicaciones de la electrónica de consumo y su alta eficiencia ha permitido su uso en el sector energético, especialmente en proyectos de movilidad eléctrica y aplicaciones de almacenamiento en sistema de potencia. Por esta razón, obtener una estimación de su condición de operación es relevante para garantizar confiabilidad en la red eléctrica. Este trabajo presenta una metodología de evaluación de la condición en sistemas de almacenamiento con baterías (Sistemas de almacenamiento con baterías BESS) a través de indicadores claves de rendimiento (Indicadores claves de rendimiento KPIs). Este enfoque sirve de guía a las empresas energéticas y propietarios para tomar decisiones durante el ciclo de vida del sistema. Esta metodología se implementa en una herramienta computacional denominada RENOBAT, que facilita el monitoreo de la condición del BESS considerando la información de diseño, construcción y operación.
Citas
U.S. DOE Energy Information Administration, “Battery Storage in the United States: An Update on Market Trends,” Batter. Storage United States An Updat. Mark. Trends, no. August, 2020, p. 37.
M. G. Molina, “Energy Storage and Power Electronics Technologies: A Strong Combination to Empower the Transformation to the Smart Grid,” in Proc. IEEE, vol.105, no.11, 2017, pp. 2191–2219. Doi: 10.1109/JPROC.2017.2702627 .
M. Barghamadi, A. Kapoor, and C. Wen, “A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery,” in J. Electrochem. Soc., vol.160, no.8, 2013, pp. A1256–A1263. Doi:10.1149/2.096308jes .
Kurzweil, P. (2015). Chapter 16 - Lithium Battery Energy Storage: State of the Art Including Lithium–Air and Lithium–Sulfur Systems. In P. T. Moseley & J. Garche (Eds.), Electrochemical Energy Storage for Renewable Sources and Grid Balancing (pp. 269–307). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-62616-5.00016-4
A. Parlikar, H. Hesse, and A. Jossen, “Topology and Efficiency Analysis of Utility-Scale Battery Energy Storage Systems,” in Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019), 2019, no. January 2020, doi: 10.2991/ires-19.2019.15.
H. J. Bergveld, W. S. Kruijt, and P. H. L. Notten, “Battery Management Systems,” in Battery Management Systems, Dordrecht: Springer Netherlands, 2002, pp. 9–30, doi: 10.1007/978-94-017-0843-2_2.
S. Duryea, S. Islam, and W. Lawrence, “Battery management system for stand alone photovoltaic energy systems,” Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., vol.4, 1999, pp. 2649–2654, doi: 10.1109/2943.922452
M. Akdere et al., “Hardware and software framework for an open battery management system in safety-critical applications,” IECON Proc. (Industrial Electron. Conf., 2016, pp. 5507–5512, doi: 10.1109/iecon.2016.7793001.
C. Fleischer, D. U. Sauer, J. V. Barreras, E. Schaltz, and A. E. Christensen, “Development of software and strategies for Battery Management System testing on HIL simulator,” 2016 11th Int. Conf. Ecol. Veh. Renew. Energies, EVER 2016, 2016, doi: 10.1109/ever.2016.7476438.
P. Eguía, E. Torres, A. Etxegarai, V. Valverde, and I. Zamora, “Optimum allocation of BESS for power quality improvement. A comparative study,” ICCEP 2019 - 7th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, pp. 450–455, 2019, doi: 10.1109/iccep.2019.8890080.
F. R. Islam, A. Lallu, K. A. Mamun, K. Prakash, and N. K. Roy, “Power Quality Improvement of Distribution Network Using BESS and Capacitor Bank,” in J. Mod. Power Syst. Clean Energy, vol.9, no.3, 2021, pp. 625–632, doi: 10.35833/mpce.2019.000304
K. Kim, T. Yoon, G. Byeon, H. Jung, H. Kim, and G. Jang, “Power demand and power quality analysis of EV charging station using BESS in MicroGrid,” 2012 IEEE Veh. Power Propuls. Conf. VPPC 2012, pp. 996–1001, doi: 10.1109/vppc.2012.6422752.
S. U. Agamah and L. Ekonomou, “Peak demand shaving and load-levelling using a combination of bin packing and subset sum algorithms for electrical energy storage system scheduling,” in IET Sci. Meas. Technol., vol.10, no.5, 2016, pp. 477–484, doi: 10.1049/iet-smt.2015.0218.
K. H. Chua, Y. S. Lim, and S. Morris, “Energy storage system for peak shaving,” in Int. J. Energy Sect. Manag., vol.10, no.1, , 2016, pp. 3–18, doi: 10.1108/IJESM-01-2015-0003.
R. Martins, H. C. Hesse, J. Jungbauer, T. Vorbuchner, and P. Musilek, “Optimal component sizing for peak shaving in battery energy storage system for industrial applications,” in Energies, vol.11, no.8, 2018, doi: 10.3390/en11082048.
M. Uddin, M. F. Romlie, M. F. Abdullah, C. K. Tan, G. M. Shafiullah, and A. H. A. Bakar, “A novel peak shaving algorithm for islanded microgrid using battery energy storage system,” in Energy, vol.196, 2020, pp. 1–13, doi: 10.1016/j.energy.2020.117084.
H. Cui, A. Hu, B. Sang, B. Yang, G. Li, and Y. Tao, “Research on Method of Photovoltaic Power Station Assisting Power Grid Black Start Based on Energy Storage,” 2018 2nd IEEE Conf. Energy Internet Energy Syst. Integr., pp. 1–6, 2018, doi: 10.1109/EI2.2018.8582088.
H. Khaloie et al., “Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model,” in Appl. Energy, vol.259, no.October, 2020, p. 114168, doi: 10.1016/j.apenergy.2019.114168.
M. Kleinberg et al., “Energy storage valuation under different storage forms and functions in transmission and distribution applications,” in Proc. IEEE, vol.102, no.7, 2014, pp. 1073–1083, doi: 10.1109/JPROC.2014.2324995.
W. Jewell and Z. Hu, “The role of energy storage in transmission and distribution efficiency,” in Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., pp.1–4, 2012, doi: 10.1109/tdc.2012.6281537.
R. T. Elliott et al., “Sharing Energy Storage Between Transmission and Distribution,” in IEEE Trans. Power Syst., vol.34, no.1, 2019, pp. 152–162, doi: 10.1109/TPWRS.2018.2866420.
E. Brun, “Key Performance Indicators for the monitoring of large scale battery storage systems,”, Master of Science Thesis Dissertation, KTH School of Industrial Engineering and Management, Division of Heat and Power Technology, 2019. urn:nbn:se:kth:diva-263899.
DNV GL - Energy, DNVGL-RP-0043 Safety, operation and performance of grid-connected energy storage systems. Chalfont, 2017.
K. Smith, M. Baggu, A. Friedl, T. Bialek and M. R. Schimpe, "Performance and health test procedure for grid energy storage systems," in IEEE Power & Energy Society General Meeting, 2017, pp. 1-5, doi:10.1109/PESGM.2017.8274326.
IEEE Standards Coordinating Committee 21, IEEE Std 2030.2.1 IEEE Guide for Design, Operation, and Maintenance of Battery Energy Storage Systems, both Stationary and Mobile, and Applications Integrated with Electric Power Systems. New York: IEEE, 2019, doi: 10.1109/IEEESTD.2019.8930450.
S. Jansson, “Evaluation of KPIs and Battery Usage of Li-ion BESS for FCR Application,” no. September, 2019. urn:nbn:se:uu:diva-394015
F. Karoui, D. L. Ha, T. Delaplagne, M. F. Bouaaziz, V. Eudier, and M. Lévy, “Diagnosis and prognosis of complex energy storage systems: Tools development and feedback on four installed systems,” in Energy Procedia, vol.155, 2018, pp. 61–76, doi: 10.1016/j.egypro.2018.11.066.
D. Rosewater, “Intro to FMEA and SSA in Energy Storage Failure Modes and Effects Analysis ( FMEA ) Systems Theoretic Process Analysis (STPA) Parting Knowledge,” in Energy Storage Association Annual Meeting 2015, p. 7.
Federal Financial Institutions Examination Council’s (FFIEC). (2022, May). System Development Life Cycle. https://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/project-management/system-development-life-cycle.aspx.
M. S. Jiménez, C. Filiou, V. Giordano, I. Onyeji, and G. Fulli, Guidelines for Conducting a Cost-benefit analysis of Smart Grid projects. European Comission, 2012.
U.S. Department of Energy, Distribution Automation: Results from the Smart Grid Investment Grand Program, 2016.
R. Echeverri-Martínez, W. Alfonso-Morales, and E. F. Caicedo-Bravo, “A methodological Decision-Making support for the planning, design and operation of smart grid projects,” in AIMS Energy, vol.8, no.4, 2020, pp. 627–651, doi: 10.3934/energy.2020.4.627.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Científica Ingeniería y Desarrollo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.