Variabilidad en las densidades, velocidades del ultrasonido y módulos dinámicos en tres maderas mexicanas y tres maderas japonesas

Autores/as

  • Javier Ramón Sotomayor-Castellanos Universidad Michoacana de San Nicolás de Hidalgo
  • Isarael Macedo Alquicira Universidad Michoacana de San Nicolás de Hidalgo
  • Hugo Luis Chávez García Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.14482/inde.38.2.624.15

Palabras clave:

Anisotropía, Coeficiente de determinación, Coeficiente de variación, Longitud de onda, Tamaño de muestra, Variabilidad en la madera

Resumen

La variabilidad en los valores experimentales de la densidad, la velocidad del ultrasonido y el módulo dinámico puede estar asociada al efecto de las propiedades intrínsecas de la madera y ser diferente entre especies y sus direcciones de anisotropía. Para verificar esta hipótesis, el objetivo de la investigación fue determinar estos parámetros en tres maderas mexicanas: Pinus pseudostrobus, Tabebuia rosea y Quercus spp, y en tres maderas japonesas: Paulownia tomentosa, Cryptomeria japonica y Fagus crenata. Se realizaron pruebas de ultrasonido en las direcciones radial, tangencial y longitudinal; igualmente, se determinaron las relaciones de anisotropía y las longitudes de onda. Los valores de las densidades, las velocidades del ultrasonido y los módulos dinámicos para las maderas de P. pseudostrobus, T. rosea, Quercus spp, P. tomentosa, C. japonica y F. crenata presentan una amplia diversidad entre especies y al interior de una especie. Esta variabilidad se puede caracterizar con los coeficientes de variación y de determinación. Las pruebas de ultrasonido son útiles para confirmar el carácter anisotrópico de la velocidad del ultrasonido y del módulo de elasticidad de la madera. Para esto, es suficiente un tamaño de muestra de 35 probetas orientadas en las direcciones radial, tangencial y longitudinal.

Biografía del autor/a

Javier Ramón Sotomayor-Castellanos, Universidad Michoacana de San Nicolás de Hidalgo

Facultad de Ingeniería en Tecnología de la Madera

Citas

R. Gonçalves, A. J. Trinca y G. C. dos Santos Ferreira, “Effect of coupling media on velocity and attenuation of ultrasonic waves in Brazilian Wood”, Journal of Wood Science, vol. 57, no. 4, pp. 282-287, 2011. Doi: 10.1007/s10086-011-1177-y

M. Hasegawa, M. Takata, J. Matsumura y K. Oda, “Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood”, Ultrasonics, vol. 51, no. 3, pp. 296-302, 2011. https://doi.org/10.1016/j.ultras.2010.10.001

K., de Borst, T. K. Bader y C. Wikete, “Microstructure-stiffness relationships of ten European and tropical hardwood species”, Journal of Structural Biology, 177(2), pp. 532-542, febr. 2012. https://doi.org/10.1016/j.jsb.2011.10.010

I. Brémaud, Y. El Kaïm, D. Guibal, K. Minato, B. Thibaut y J. Gril, “Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types”, Annals of Forest Science, vol. 69, no. 3, pp. 373-386, abr. 2012. https://doi.org/10.1007/s13595-011-0166-z

L. Wagner, T. K. Bader, D. Auty y K. de Borst, “Key parameters controlling stiffness variability within trees: a multiscale experimental-numerical approach”, Trees, vol. 27, no. 1, pp. 321-336, febr. 2013. https://doi.org/10.1007/s00468-012-0801-9

D. Guitard y C. Gachet, “Paramètres structuraux et/ou ultrastructuraux facteurs de la variabilité intra-arbre de l’anisotropie élastique du bois”, Annals of Forest Science, vol. 61, no. 2, pp. 129-139, 2004. https://doi.org/10.1051/forest:2004004

K. Hofstetter y E. K. “Gamstedt, Hierarchical modelling of microstructural effects on mechanical properties of wood: a review COST Action E35 2004-2008: wood machining-micromechanics and fracture. Holzforschung, vol. 63, no. 2, pp. 130-138, 2009. https://doi.org/10.1515/HF.2009.018

I. Brémaud, J. Gril y B. Thibaut, “Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data”, Wood Science and Technology, vol. 45, no. 4, pp. 735-754, nov. 2011. https://doi.org/10.1007/s00226-010-0393-8

Z. Liu, Z. Zhang y R. O. Ritchie, “Structural orientation and anisotropy in biological materials: functional designs and mechanics”, Advanced Functional Materials, vol. 30, no. 10, p. 1908121, mzo. 2020. https://doi.org/10.1002/adfm.201908121

P. Dietsch, S. Franke, B. Franke, A. Gamper y S. Winter, “Methods to determine wood moisture content and their applicability in monitoring concepts”, Journal of Civil Structural Health Monitoring, vol. 5, no. 2, pp. 115-127, abr. 2015. https://doi.org/10.1007/s13349-014-0082-7

L. Cheng, J. Dai, Z. Yang, W. Qian, W. Wang, L. Chang, X. Li y Z. Wang, “Theoretical and experimental research on moisture content and wood property indexes based on nondestructive testing”, BioResources, vol. 15, no. 1, pp. 1600-1616, 2020.

U. Dackermann, R. Elsener, J. Li y K. Crews, “A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood”, Construction and Building Materials, vol. 102, pp. 963-976, en. 2016. https://doi.org/10.1016/j.conbuildmat.2015.07.195

E. V. Bachtiar, S. J. Sanabria, J. P. Mittig y P. Niemz, “Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques”, Wood Science and Technology, vol. 51, no. 1, pp. 47-67, en. 2017. https://doi.org/10.1007/s00226-016-0851-z

C. S. Montes, J. C. Weber, R. A. García, D. A. Silva y G. I. Muñiz, “Variation in growth, wood stiffness and density, and correlations between growth and wood stiffness and density in five tree and shrub species in the Sahelian and Sudanian ecozones of Mali”, Trees, vol. 31, no. 3, pp. 833-849, en. 2017. https://doi.org/10.1007/s00468-016-1508-0

R. Viala, V. Placet y S. Cogan, “Simultaneous non-destructive identification of multiple elastic and damping properties of spruce tonewood to improve grading”, Journal of Cultural Heritage, vol. 42, pp. 108-116, mzo.-abr. 2020. https://doi.org/10.1016/j.culher.2019.09.004

J. R. Sotomayor Castellanos, “Módulos de elasticidad e índices de calidad de maderas mexicanas: síntesis de datos del Laboratorio de Mecánica de la Madera”, Investigación e Ingeniería de la Madera, vol. 15, no. 1, pp. 4-64, 2019.

F. G. Rosa de Oliveira y A. Sales, “Relationship between density and ultrasonic velocity in Brazilian tropical woods”, Bioresource Technology, vol. 97, no. 18, pp. 2443-2446, dic. 2006. https://doi.org/10.1016/j.biortech.2005.04.050

Z. R. Zhou, M. C. Zhao, M. Gong y Z. Wang, “Variation of density and dynamic modulus of elasticity of poplar veneer and its impact on grade yield”, BioResources, vol. 12, no. 1, pp. 1344-1357, 2017.

T. Y. Aydin y M. Aydin, “Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey”, Türkiye Ormanc?l?k Dergisi, vol. 19, no. 4, pp. 413-418, 2018. Doi:10.18182/tjf.459005

J. Baar, J. Tippner y V. Gryc, “The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method”, European Journal of Wood and Wood Products, vol. 70, no. 5, pp. 767-769, sep. 2012. https://doi.org/10.1007/s00107-011-0550-2

D. Ponneth, A. E. Vasu, J. C. Easwaran, A. Mohandass y S. S. Chauhan, “Destructive and non-destructive evaluation of seven hardwoods and analysis of data correlation”, Holzforschung, vol. 68, no. 8, pp. 951-956, 2014. https://doi.org/10.1515/hf-2013-0193

J. Tippner, J. Hrivnák y M. Kloiber, “Experimental evaluation of mechanical properties of softwood using acoustic methods”, BioResources, vol. 11, no. 1, pp. 503-518, 2016.

R. Gonçalves, A. J. Trinca y B. P. Pellis, “Elastic constants of wood determined by ultrasound using three geometries of specimens”, Wood Science and Technology, vol. 48, no. 2, pp. 269-287, mzo. 2014. https://doi.org/10.1007/s00226-013-0598-8

H. Unterwieser y G. Schickhofer, “Influence of moisture content of wood on sound velocity and dynamic MOE of natural frequency-and ultrasonic runtime measurement”, European Journal of Wood and Wood Products, vol. 69, no. 2, pp. 171-181, my. 2011. https://doi.org/10.1007/s00107-010-0417-y

F. Arriaga, D. F. Llana, M. Esteban y G. Íñiguez-González, “Influence of length and sensor positioning on acoustic time of-flight (ToF) measurement in structural timber”, Holzforschung, vol. 71, no. 9, pp. 713-723, 2017. https://doi.org/10.1515/hf-2016-0214

O. Perçin, S. D. Sofuoglu y O. Uzun, “Effects of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood”, BioResources, vol. 10, no. 3, pp. 3963-3978, 2015.

S. A. Ahmed y S. Adamopoulos, “Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments”, Applied Acoustics, vol. 140, pp. 92-99, nov. 2018. https://doi.org/10.1016/j.apacoust.2018.05.017

J. R. Sotomayor Castellanos, L. I. Guridi Gómez y T. García Moreno, “Características acústicas de la madera de 152 especies mexicanas: velocidad del ultrasonido, módulo de elasticidad, índice material y factor de calidad: base de datos”, Investigación e Ingeniería de la Madera, vol. 6, no. 1, pp. 3-32, 2010.

B. Anshari, Z. W. Guan, A. Kitamori, K. Jung, I. Hassel y K. Komatsu, “Mechanical and moisture-dependent swelling properties of compressed Japanese cedar”, Construction and Building Materials, vol. 25, no. 4, pp. 1718-1725, abr. 2011. https://doi.org/10.1016/j.conbuildmat.2010.11.095

Y. Miyoshi, K. Kojiro y Y. Furuta, “Effects of density and anatomical feature on mechanical properties of various wood species in lateral tensión”, Journal of Wood Science, vol. 64, no. 5, pp. 509-514, oct. 2018. https://doi.org/10.1007/s10086-018-1730-z

W. Hidayat, Y. Qi, J. H. Jang, F. Febrianto y N. H. Kim, “Effect of mechanical restraint on the properties of heat-treated Pinus koraiensis and Paulownia tomentosa Woods”, BioResources, vol. 12, no. 4, pp. 7539-7551, 2017.

J. R. Sotomayor Castellanos, K. Adachi, R. Iida y T. Hayashi, “Anisotropía en velocidades de onda y módulos dinámicos determinados con ondas de esfuerzo en maderas mexicanas y japonesas”, Revista Amazónica Ciencia y Tecnología, 2020.

A. Hanhijärvi, A. Ranta-Maunus y G. Turk. (2005). Potential of strength grading of timber with combined measurement techniques [En línea]. Disponible en: https://www.vttresearch.com/sites/default/files/pdf/publications/2005/P568.pdf

J. Ilic, “Dynamic MOE of 55 species using small wood beams”, Holz als Roh-und Werkstoff, vol. 61, no. 3, pp. 167-172, jun. 2003. https://doi.org/10.1007/s00107-003-0367-8

J. Crespo, J. R. Aira, C. Vázquez y M. Guaita, “Comparative analysis of the elastic constants measured via conventional, ultrasound, and 3-D digital image correlation methods in Eucalyptus globulus Labill. BioResources, vol. 12, no. 2, pp. 3728-3743, 2017.

V. Bucur y N. F. Declercq, “The anisotropy of biological composites studied with ultrasonic technique”, Ultrasonics, vol. 44, pp. e829-e831, dic. 2006. https://doi.org/10.1016/j.ultras.2006.05.203

H. G. Richter, D. Grosser, I. Heinz y P. E. Gasson, “IAWA list of microscopic features for softwood identification”, Iawa Journal, vol. 25, no. 1, pp. 1-70, en. 2004. https://doi.org/10.1163/22941932-90000349

E. A. Wheeler, P. Baas y P. E. Gasson, “IAWA list of microscopic features for hardwoods identification”, IAWA Bulletin, vol. 10, no. 3, pp. 219-332, 2007.

C. Kohlhauser y C. Hellmich, “Determination of Poisson’s ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: application to metals and wood”, European Journal of Mechanics-A/Solids, vol. 33, pp. 82-98, my.-jun. 2012. https://doi.org/10.1016/j.euromechsol.2011.11.009

A. Bartholomeu, R. Gonçalves y V. Bucur, “Dispersion of ultrasonic waves in Eucalyptus lumber as a function of the geometry of boards”, Scientia Forestalis, vol. 63, pp. 235-240, 2003.

I. Brémaud, “Acoustical properties of wood in string instruments soundboards and tuned idiophones: biological and cultural diversity”, The Journal of the Acoustical Society of America, vol. 131, no. 1, pp. 807-818, en. 2012. https://doi.org/10.1121/1.3651233

U. G. Wegst, “Wood for sound”, American Journal of Botany, vol. 93, no. 10, pp. 1439-1448, oct. 2006. https://doi.org/10.3732/ajb.93.10.1439

S. Gao, X. Wang y L. Wang, “Modeling temperature effect on dynamic modulus of elasticity of red pine (Pinus resinosa) in frozen and non-frozen states”, Holzforschung, vol. 69, no. 2, pp. 233-240, 2015. https://doi.org/10.1515/hf-2014-0048

K. Ziemi?ska, M. Westoby y I. J. Wright, “Broad anatomical variation within a narrow wood density range: a study of twig wood across 69 Australian angiosperms”, PLoS One, vol. 10, no. 4, p. e0124892, abr. 2015. https://doi.org/10.1371/journal.pone.0124892

Descargas

Publicado

2020-07-03

Cómo citar

[1]
J. R. Sotomayor-Castellanos, I. Macedo Alquicira, y H. L. Chávez García, «Variabilidad en las densidades, velocidades del ultrasonido y módulos dinámicos en tres maderas mexicanas y tres maderas japonesas», Ing. y Des., vol. 38, n.º 2, pp. 382–399, jul. 2020.

Número

Sección

Artículos