La calculadora: Una fuente de exploraciones conceptuales.

Main Article Content

María Viñas De la Hoz
Patricia Navarro
Eugenio Ortega Collante

Abstract

This article describes the advantages obtained when using technology, such as Calculator TI 92 Plus, in the development of mathematical reasoning, specifically of variational thinking. As an example, it is analyzed the work carried out by two groups of ninth grade students by using the calculator. The work consisted of solving problemsabout quadratic functions. By using dynamics resources from the calculator, they carried out multiple explorations leading to search solutions. The possibility of interacting with different registers . of representation was the key for students to achieve the representational fluidity, which facilitated the construction and articulation of mathematical concepts.

Downloads

Download data is not yet available.

Article Details

Section
Artículo de investigación
Author Biographies

María Viñas De la Hoz, Universidad Del Norte.

PROFESORA CATEDRATICA en Universidad del Norte

Patricia Navarro, Escuela Normal Superior Santa Ana

Escuela Normal Superior Santa Ana

Eugenio Ortega Collante, Escuela Normal Superior La Hacienda.

Docente de la Escuela Normal Superior La Hacienda.

References

AZCÁRATE, C. & DEULOFEU, J. (1996) Funciones y Gráficas. Madrid: Síntesis.

CUOCO, A. & E.P. GOLDENBERG (1996)“Dynamic geometry as a bridge from Euclidean geometry to analysis.” In Schattschneider,

D. and J. King (Eds.), Geom-etry Turned On: Dynamic Software in Learn-ing, Teaching, and Research.

MAA Notes, volume 41. Washington, DC: Mathematics Association of America. DUVAL, R. (1999) Semiosis y Pensamiento humano, registros semióticos y aprendizajes intelectuales. Traducción al español de Myriam Vega. Universidad del Valle. Primera edición. Santiago de Cali. P 314

HEUGL, H. (1998, November) The influence of Computeralgebra Systems in y the Function concept. ICTM conference, New Orleans.

JANVIER, C., GIRARDON, C., & MORAND, J. (1993)Mathematical symbols and representations.

In P. S. Wilson (Ed.), Research ideas for the classroom: High school mathematics (pp. 79-102). Reston, VA: National Council of Teachers of Mathematics.

LUPIAÑEZ, J. & MORENO, L. (2001) Tecnología y representaciones semióticas en el aprendizaje de las matemáticas. Estudios de Doctorado: Iniciación a la investigación en Didáctica de la Matemática. Universidad de Granada.

MINISTERIO DE EDUCACIÓN NACIONAL (2001)Lineamientos Curriculares. Matemáticas. Áreas Obligatorias y Fundamentales. Pensamiento variacional y sistemas algebraicos y analíticos, p.72.

NATIONAL COUNClL OF TEACHERS OF MATHEMATICS (2000) Principies and Standards for school mathematics. Reston, VA: Author.

PAPE, S. J., & TCHOSHANOV, M. A. (2001)“The role of representation(s) in developing mathematical understanding”. Theory into Practice, 40(2), 118-125.