Quantitative Reasoning, Language and Mathematics
Main Article Content
Abstract
The transfer of knowledge to everyday situations containing information of a quantitative nature, called generic situations, is an indicator of what it is to be competent in the area of mathematics; therefore, obstacles that may arise in the observation and communication of such situations in-terfere with the full understanding of them and their subsequent translation into mathematical language. This document presents an alternative work from promotions in advertising brochu-res, computer graphics, charts or diagrams published in magazines or newspapers that allows, through exploration, for the understanding and analysis of the situation, to work mathematical skills to strengthen quantitative reasoning, showing a methodological path that will help students overcome the paradox of specific language, which is seen as an obstacle to communication and learning in mathematics.
Downloads
Article Details
- Authors retain copyright and grant the journal right of first publication, with the work [SPECIFY PERIOD OF TIME] after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Zona Próxima
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
D’Amore, B. (2006).Didáctica de la Matemática. Editorial Magisterio.
Haavold, P. (2011, Diciembre). Mathematical Competence. What is it and What Ought it be? Philosophy of Mathematics Education Journal, 26 1-11. http://socialsciences.exeter.ac.uk/education/ research/centres/stem/publications/pmej/pome26/index.html
Gorski, D. P (1966). Pensamiento y Lenguaje. Grijalbo.
Mayer, R. (1986). Pensamiento Resolución de Problemas y Cognición. Paidós.
Ministerio de Educación Nacional. [MEN]. (2012). PRUEBAS SABER 3o , 5o. y 9o. ,:
Lineamientos para las Ministerio de Educación Nacional. [MEN]. (2013). Sistema Nacional de Evaluación Estandarizada de la aplicaciones muestral y censal 2012. Ministerio de Educación Nacional Educación. Alineación del examen SABER 11. Ministerio de Educación Nacional.
Muñoz, A. E. y Ocaña, M. (2017). Uso de estrategias metacognitivas para la comprensión textual. Cuadernos de Lingüística Hispánica, 29, 223-244. http://dx.doi. org/10319053/01211053X. n29.2017.5865.
Organización para la Cooperación y el Desarrollo económicos OCDE (2009). Pisa 2009 assessment framewrok. key competencies in reading, mathematics and science. Technical report.
Vasco, C. E. (2003). Estándares básicos de calidad para la educación. Mimeo. Vigotsky, L (2010). Pensamiento y Lenguaje. Paidos.