An alternative to prevent the error of linearization (x ± y)^n = x^n ± y^n
Main Article Content
Abstract
In this paper an alternative to prevent the so-called linearization error is presented as a product of the investigation of algebraic errors that our freshmen produce, which occurs very often when our students intend to develop exercises that require algebraic manipulations. In addition, it seeks to identify the possible source of error and to implement the use of computational tools that enable you to minimize the presence of this type of error. The proposal is based on the power of computational tools to amplify the structure under study, in this case the error (x ± y)^n = x^n ± y^n, that allows us to reorganize the knowledge obtained from the scans with a symbolic computation software.
Downloads
Article Details
- Authors retain copyright and grant the journal right of first publication, with the work [SPECIFY PERIOD OF TIME] after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Zona Próxima
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
Cervantes, G. & Martínez, R. (2007). Sobre algunos errores comunes en desarrollos algebraicos. Zona Próxima, 8 pp. 35 - 41.
Lakatos, I. (1978). Pruebas y refutaciones: la lógica del descubrimiento matemático. Madrid: Alianza Universidad.
Kutzler, B. & Kokol-Volic, V. (2000). Introducción a DERIVE 5. Valencia: Derisoft.
Moreno, L. (2001). Calculadoras algebraicas y aprendizaje de los motemáticas. Memorias del Seminario Nacional de formación de Docentes sobre uso de nuevas tecnologías en el aula de Matemáticas. 93-98.Bogotá: Enlace.
Moreno, L. & Waldegg, G. (2001). Fundamentación cognitiva del currículo de matemáticas. Memorias del Seminario Nacional de formación de docentes sobre uso de nuevas tecnologías en el aula de Matemáticas. 40-66.Bogotá: Enlace.